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Executive summary 

Currently, national and local roads authorities use deterministic (rule based) methods within 
the tools they apply for the identification of lengths that should be considered for 
maintenance (schemes), and to determine their priority for maintenance. These tools utilise 
condition data (provided by automated and human assessors). The condition data is used to 
identify schemes, which are then further assessed to determine which will be treated. 
However, the current rules-based approaches do not produce outcomes that robustly 
reflect the decisions that engineers would themselves make. The availability of improved 
tools to support this process could assist engineers in making consistent decisions, improve 
efficiency and support better long-term planning. 

This work investigates how an outcome-based approach could be developed to better 
identify lengths for treatment. The development of the model draws on network level data 
from the Strategic Road Network. This includes condition data such as visual condition, 
roughness and skid resistance, and contextualising information such as construction, traffic, 
material and age. These are collated and aligned with data on the actual treatments that 
were carried out on the lengths for which the condition and contextualising data were 
available. The dataset is split 80/20 to train/test a set of machine learning models. The best 
performing of these models deploys the Random Forest Classifier, which is referred to in 
this work as the Digital Engineer. 

The locations identified for treatment by the Digital Engineer in the test dataset are 
compared with those that were actually treated. The locations are also compared with the 
locations identified using deterministic (rules-based) methods. The accuracy scores suggest 
that the Digital Engineer provides a significantly higher level of overall accuracy in the 
identification of lengths requiring treatment than the rules-based methods. The Digital 
Engineer also identifies the specific lengths that were treated to a much high level of 
accuracy and was more consistent in identifying the lengths that were not treated. 

The results indicate that additional contextualising information is required to help digital 
tools deliver recommendations for treatment that better reflect the decisions made by 
engineers, and that Machine Learning techniques may be used to apply this additional 
contextualising information. However, there are complexities in the way that models apply 
the data to make decisions on treatments. The influences of contextual factors (e.g. 
location, type), and their balance with condition, may need to be better understood and 
explained as the development of the Digital Engineer matures. This will ensure that such an 
approach can be trusted and can be generally applied. 

It is suggested that further development and testing of the Digital Engineer approach should 
aim to better understand the influence of features on tool decisions, including identifying 
any that could be included in the Digital Engineer that were not available as part of this 
study. A more comprehensive model verification could also be undertaken. There would 
also be benefit in considering the route to implementation, perhaps in collaboration with 
pavement engineers, and whether the approach could be implemented within TRL’s iROADS 
system.  
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1 Introduction 

Currently, as part of their road maintenance management process, many national and local 
roads authorities use deterministic (rule based) methods for the identification of lengths 
that should be considered for maintenance (schemes), and to determine the priority for 
maintenance (treatments) on those lengths. For example, the condition of the English 
Strategic Road Network (SRN) is currently assessed through surveys carried out using 
specialist tools/devices and by human engineers. The condition data provided are used to 
identify schemes. These schemes are then further assessed by engineers to determine 
which schemes should be treated. Similar approaches are also applied on local roads in the 
UK. 

Due to the human component, it is inevitable that a number of factors other than road 
condition are considered during the engineer’s assessment. Experience on the SRN suggests 
that there is a disconnect between the lengths identified using current rules-based 
methods, and those lengths that actually receive treatment. The aim of the work presented 
in this report was to understand whether it would be possible to utilise the wider data 
available to highway engineers to improve the ability to identify the lengths for treatment 
that are actually treated on the network. The availability of improved tools to support this 
process could assist engineers in making consistent decisions, improve efficiency and 
support better long-term planning. 

It was proposed that an outcome-based approach, in the form of a traditional machine 
learning algorithm, be investigated. Therefore, this work develops a machine learning model 
to identify lengths requiring treatment. The work focusses on the Strategic Road Network, 
for which data was made available by National Highways. Data is collated on road condition, 
along with wider contextualising information such as construction, traffic, material and age. 
By comparing these with data on actual treatments, a set of machine learning models are 
developed, trained and tested. The best performing model is selected, which is named the 
Digital Engineer, and its performance discussed. 

 

  



The application of AI to pavement assessment   

 

 

Final 6 ACA108 

2 Background - approach to maintenance management 

On Strategic Roads National Highways use a seven-stage approach to the planning of 
pavement maintenance based on the 3D process (Develop, Design, Deliver), Table 1. Stages 
0 and 1 (scheme identification, and options assessment) are the focus of this work. 

 

Table 1: National Highways 3D process 

Stage Objective 

Stage 0: Scheme identification 
Develop 

Stage 1: Options assessment 

Stage 2: Preliminary design 
Design 

Stage 3: Detailed design 

Stage 4: Commercial pricing 

Deliver Stage 5: Scheme construction 

Stage 6: Scheme close out 

 

National Highways’ Decision Support Tool (DST) acts as the basis for scheme identification. 
The tool is used to identify and inform a programme of works, based on a range of data, 
including: 

• Condition from TRAffic speed Condition Surveys (TRACS), TRAffic speed Structural 
Surveys (TRASS), and Sideway-force Coefficient Routine Investigation Machine 
(SCRIM) surveys 

• Traffic from the Web TRaffic Information System (WebTRIS)  

• Pavement construction information from Highways Agency Pavement Management 
System (HAPMS) and (more recently) Pavement-Asset Management System (P-AMS)  
pavement records 

The rulesets used by the DST are based on those laid out in CS 228 (CS 228 Pavement 
inspection and assessment - Skidding resistance, 2021), and CS 230 (CS 230 Pavement 
maintenance assessment procedure, 2020). CS 230 mandates a series of condition surveys 
to assess the structural and surface properties of the road. TRACS surveys are carried out 
annually to assess the condition of the pavement surface by measuring parameters such as 
texture depth, rutting, cracking, and longitudinal profile. TRASS surveys are carried out to 
assess the structural integrity of the pavement by measuring pavement deflection and 
collecting ground penetrating radar information. CS 228 mandates an additional survey 
(SCRIM), which annually assesses the skid resistance properties of the pavements. 

The results of these surveys are interpreted using the condition thresholds defined in 
CS 230, as well as the skid resistance investigatory levels provided in CS 228. The 
combination of these standards assists the DST, and highway engineers, to identify schemes 
where maintenance could be carried out. 
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In addition to the results of the DST, regional operators (which include private companies 
commissioned by National Highways to manage an Operational Area) will consider regional 
needs to satisfy the pavement condition metrics and performance indicators provided in the 
Design Manual for Roads and Bridges (DMRB) and the Asset Class Strategy (Highways 
England, 2020). These regional needs may incorporate network availability, regional major 
projects, accident data, or road user needs. 

Once potential schemes have been identified, they are assessed for maintenance 
prioritisation. Table 2 presents National Highways guidance for initial prioritisation of 
potential schemes (National Highways, 2023) which aligns with National Highways’ three 
imperatives, Safety, Customer Service and Delivery, with equal weighting given to each 
imperative. 

 

Table 2: Maintenance prioritisation imperatives (National Highways, 2023) 

 Priority approach Specific considerations 

Sa
fe

ty
 

The prioritisation of schemes 
under safety is based on skid 
resistance, texture depth and 
rutting, parameters that have 
been shown to correlate with 
collision risk. 

Skid resistance: The priority assessment is based on skid 
deficiency i.e. the level of skid resistance relative to the 
Investigatory Level (IL). Higher priority is given to schemes 
where skid resistance is below the IL.  

Texture depth and Rut depth: The priority assessment for 
these parameters is based on the TRACS condition 
category as defined in CS 230 with higher priority given to 
the poorer condition categories. 

C
u

st
o

m
e

r 
se

rv
ic

e 

For customer service, priority 
is given to schemes that will 
improve ride quality, reduce 
noise or address customer 
complaints. 

Ride quality: The assessment is based on the TRACS 
eLPV3, eLPV10 condition categories and the Bump Index 
as defined in CS 230, with higher priority given to schemes 
with poorer ride quality. 

Noise: The assessment is based on the noise sensitivity of 
the scheme (assessed in accordance with CD 236) and the 
existing surface type.  

Customer complaints: The assessment is based on 
schemes with high numbers of customer complaints that 
would be addressed by pavement renewal works (which 
could include potholes, bumps, noise etc.) 

D
e

liv
er

y 

For delivery, priority is given 
to schemes where there is a 
high risk of unplanned 
maintenance being required 
due to pavement condition. 
The three parameters 
considered are NSC (on 
TRASS) for flexible 
pavements, the number of 
RMMS/Confirm defects and 
the proportion of length that 
will improve the KPI3 score. 

TRASS structural condition: The assessment is based on 
the TRASS NSC as defined in CS 230 with higher priority 
given to schemes in the poorer condition. 

RMMS/confirm defects: The assessment is based on the 
number of pavement-related defects, per carriageway-km, 
recorded over the most recent three-year period. 

KPI3: The assessment is based on the percentage of the 
scheme length that, when treated, will improve the KPI3. 
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Following the completion of the first stage (scheme identification), schemes move into the 
options assessment phase.  During this phase, at least two options are created for each 
scheme: a ‘Do Minimum’ option to restore the pavement to a serviceable state; and (at 
least one) ‘Preferred Option’ to address a wider range of maintenance needs. National 
Highways select a single design from the options developed using the lifecycle costing 
software ‘Software for the Whole-life Economic Evaluation of Pavement Schemes’ 
(SWEEP.S). This software determines the option providing the best value for money over a 
60-year period.  SWEEP.S considers a wide variety of cost factors in its calculations, 
including: cost of works; costs due to accidents and delays; economic benefits; future traffic 
growth; current pavement condition and deterioration rates. Schemes selected based on a 
SWEEP.S analysis will then be taken forward to the design and deliver maintenance 
processes. 
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3 The potential for the application of Machine Learning to 
maintenance management 

3.1 Machine Learning 

Machine Learning (ML) is an umbrella term which refers to a wide range of statistical tools. 
These tools fall into a hierarchy of complexity as illustrated in Figure 1, where smaller circles 
indicate higher orders of complexity. It can be seen that Artificial Neural Networks (ANNs) 
are the most sophisticated methods shown. However, whilst ANNs may offer a high level of 
predictive power, they are also highly complex statistical models and require a considerable 
effort to setup and train. 

 

 

Figure 1: The hierarchy of artificial intelligence methods 

 

In contrast to ANNs, machine learning and deep learning methods can provide advantages 
in terms of model training, the setting up of the models, computing power, storage, and 
implementation. Figure 2 presents the hierarchy of some specific machine learning and 
deep learning algorithms. With the exception of the neural network methods, the functional 
training and use of the algorithms is similar. 
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Figure 2: The hierarchy of machine learning and deep learning algorithms (adapted from 
(Kneusel, 2021)) 

 

This work aimed to investigate if the less complex ML tools could be used to predict 
locations for maintenance, and in particular whether these could provide a better level of 
agreement with human decisions than the current approach applying traditional rules-based 
methods. This would be achieved by creating a ML tool, called the ‘Digital Engineer’, which 
(if successful) could provide engineers with advice regarding locations for scheme selection. 
The guiding principle was therefore to supplement the deterministic (ruleset based) 
approaches for scheme identification laid out in CS 228 and CS 230 with an analytical 
outcome-based approach. This outcome-based approach would utilise the same data as 
CS 228 and CS 230. However, because the outcomes would utilise ML algorithm training 
drawn from real world schemes, they should indirectly accommodate the additional 
analyses applied by engineers (organisational preferences and other factors) that lead to the 
current schemes identified for maintenance on the SRN. 

Note: It was not the intention of this work to develop an “automated engineer”. Decisions 
would still require human intervention. Rather, the Digital Engineer aims to increase 
efficiency. The current rules-based approach for maintenance selection identifies many 
potential lengths, which must be sifted and prioritised. It was anticipated that the Digital 
Engineer would allow engineers to more robustly shortlist the schemes most likely to pass 
through to Stage 6. This would help engineers to focus on those schemes which are most 
likely to be implemented. 

It is also anticipated that the Digital Engineer could support maintenance scheme design for 
local roads. As for the SRN, Local Highway Authorities (LHAs) undertake routine surveys to 
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collect condition data. The Surface Condition Assessment of the National Network of Roads 
(SCANNER) survey is currently mandated for local classified roads. LHAs use the SCANNER 
data (in combination with other local data) to identify potential schemes. As SCANNER 
provides data that is similar to the TRACS surveys carried out on the SRN, the Digital 
Engineer could (subject to training) be used to identify potential schemes on local roads. 

3.2 Previous work in this area 

The following is a brief summary of other work that has been undertaken to apply machine 
learning methods to identify locations for maintenance.  This is not an exhaustive list. It is 
provided as a contextualising overview. 

• In 1996 work was carried out to implement an Artificial Neural Network (ANN) to 
develop and implement an automatic procedure for screening and recommending 
roadway sections for pavement preservation on the Arizona Department for 
Transport network in the USA. The ANN correctly predicted the treatment 
recommendation in 76 percent of cases presented during model testing (an accuracy 
score of 0.76) (Flintsch et al., 1996). 

• (Salini et al., 2015) carried out an investigation into the use of various AI tools to 
predict actual pavement maintenance actions based on pavement condition, 
budgetary constraints, and strategic importance. They concluded that genetic 
algorithms could be used to predict the most appropriate maintenance actions. 

• A similar ANN approach to that applied by (Flintsch et al., 1996) was used by (Mosa, 
2017), who considered the use of pavement condition parameters and defects to 
identify optimum interventions. However, in the work of Mosa the optimum 
interventions were generated based on rulesets rather than using real world data. 
Because of this it was not possible to verify the real-world performance of the ANN. 

• (Domitrovic et al., 2018) analysed the possibility of using ANNs to evaluate pavement 
condition, and its application in the generation of maintenance schemes for the 
Croatian National Roads Authority. A backpropagation ANN was developed and 
tested on 481.3 km of national roads. The investigation indicated that ANNs could be 
used for optimisation of maintenance or rehabilitation strategies, and for the 
assessment of pavement condition at the project and network level. 

It should be noted that with the exception of (Salini et al., 2015), all the research presented 
above utilised ANNs. This work was seeking to investigate if the use of simpler ML tools can 
generate useful results.  
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4 Data Collection 

Two key data sources were interrogated to provide data to develop the Digital Engineer 
model. The National Highways pavement management database ‘HAPMS’ provided 
treatment, inventory, and condition data. The National Highways Web-based TRaffic 
Information System (WebTRIS) provided traffic data. These data sources were processed to 
produce three main ‘data types’ as described in the following sections. 

4.1 Treatment data 

The treatment data reflect interventions actually carried out on the SRN. The Digital 
Engineer aimed to predict these interventions (i.e. to treat / not treat a length).  A full 
description of the treatment dataset is provided in Appendix A.1.  In summary, ~3 million 
rows of data were extracted from HAPMS, which separated the SRN into discrete sub-
sections containing homogeneous constructions. The key information for these sub-sections 
was whether treatment had been carried out on the sub-section, and the date of the 
treatments. Whilst several categories of “treatment” were identified, some (such as ‘Newly 
constructed’) did not actually refer to a treatment. To simplify the analysis only the 
following categories were considered as treatments: Inlay, Re-surfacing, Re-construction, 
Surface Treatment, and Overlay. 

4.2 Condition data 

Condition data describe the condition of the SRN, as determined by annual surveys. In the 
light of the process discussed in Section 2, pavement condition data from the following 
annual surveys carried out by National Highways was used in this work:  

• TRAffic speed Condition Surveys (TRACS), which provide information regarding the 
geometric properties of the road surface.  Vehicles capture surface information 
though image, laser, accelerometer, inertial, and GPS measurements. For this work 
the following measured parameters were used from TRACS surveys; Rutting, Texture 
depth, Ride quality, Fretting, and Cracking.  These parameters are described in the 
next chapter. 

• TRAffic speed Structural Surveys (TRASS), which provide information regarding the 
structural condition of the pavement. TRASS survey vehicles measure the deflection 
of a pavement in response to loading from a HGV.  This work has used the TRASS 
structural condition category data (NSC) which measures condition on a 1 (good) – 4 
(poor) scale. 

• Sideway-force Coefficient Routine Investigation Machine (SCRIM) surveys, which 
provide information on the skid resistance performance of the road surface. SCRIM 
devices use a test wheel to measure skid resistance under wet conditions. For this 
work the Characteristic Skid Coefficient (CSC) was used. 
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A full description of the condition dataset is provided in Appendix A.2. In summary, 
condition data were gathered for surveys carried out during the period 2005-2021 
(inclusive), with the following parameters: 

• Rutting (reported as values of ‘maximum rut’), which represents the deepest rut 
measured in either wheelpath. 

• Texture depth (reported as values of SMTD), which represent the texture depth of 
the road surface in the nearside wheel path. 

• Ride quality; reported either as values of Moving Average Longitudinal Profile 
Variance MALPV, or enhanced Longitudinal Profile Variance (eLPV) at 3m, 10m, and 
30m wavelengths. It is noted that the MALPV measure was changed to eLPV in 2014.  
As the data analysis extended before this date there was a need to accommodate 
this change. To maximise the amount of 3m and 10m MALPV / eLPV data available 
(and to enable them to be considered as comparable parameters), the ride quality 
parameter values were converted into Roughness Index (calculated using 
Equation 1). This provided Roughness Index values based on MALPV and eLPV. These 
Roughness Index values were later re-scaled so that they could be directly 
compared, as discussed in Section 5.3. 

𝑅𝐼 = max (
√10 ∙ 3𝑚 𝑒𝐿𝑃𝑉

3
+ √10𝑚 𝑒𝐿𝑃𝑉 − 0.1, 0) 

Equation 1: Calculating the roughness index 

• Fretting, which characterises the amount of chip loss (pavement aggregate) over the 
lane width. 

• Cracking (reported as whole carriageway cracking), which characterises the amount 
of cracking over the width of the whole carriageway. 

• Deflection (reported as TSD / TRASS structural condition category), which 
characterises the amount of deflection of the pavement experienced in response to 
the loads exerted on it in the range 1 to 4 inclusive. 

• Skid resistance (reported as Characteristic Skid Coefficient (CSC)), which describes 
the low speed, high slip (locked-wheel) skid resistance of the pavement in the 
nearside wheel path. 

• Skid difference, which reports the difference between the measured skid resistance 
and the in-service requirement for skid resistance. 

4.3 Contextualising data 

Contextualising data may influence the selection of sites as schemes for intervention but are 
not data which describe the condition. The contextualising data used in this work (see also 
Appendix A.2) were: 

• Traffic. The number of HGV passes per year 
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• Material age. The age of the surface layer, sub-surface (i.e. the layer immediately 
below the surface layer), and the base layer 

• Thickness. The thickness of the surface layer in mm 

• Material type. The type of the material used in the construction of the surface layer, 
sub-surface layer, and base layer 

• The operational Area. The SRN is separated into 14 operational Areas. Some of these 
are managed by sub-contracting entities 

• The operational environment. Reported as ‘urban’ or ‘rural’ 

• The carriageway type. Reported as ‘single carriageway’ or ‘dual carriageway’ 

With the exception of the traffic data, contextualising data were gathered at the same time 
as the treatment / condition data. Traffic data were collected from WebTRIS National 
Highways’ Web based Traffic Information System.  
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5 Data Processing 

5.1 Data wrangling 

Data wrangling is the process of converting raw data into a usable form, sometimes referred 
to as pre-processing. The data wrangling stage focussed on combining the datasets 
summarised in Section 4 so that they could be considered together (locationally aligned, 
comparable reporting intervals etc.) in the data exploration phase. A notable challenge for 
this work was the different methods of data delimitation / geo-referencing used. For 
example, condition data are nominally presented in 100m sub-sections, whereas the 
treatment data were not length delimited. This, along with other differences in data formats 
required complex joins and filters to be applied to the data. The data wrangling hence 
provided a single dataset of “features” for the development of a machine learning model, to 
be passed to the initial data exploration stage. A summary flowchart of the data wrangling 
process is presented in Figure 3. Further detail on the data wrangling is presented in 
Appendix B. 

5.2 Initial exploration 

Initial exploration was carried out to identify any further requirements for filtering or 
wrangling of the data before applying the machine learning. The following data analyses 
were carried out: 

• The prevalence of each initial model feature was plotted as a bar charts 

• The relationships between the initial model features were assessed for 
interdependence 

• The distribution of the initial model features, and dependant variables were plotted 
as histograms or bar charts 

The key findings are provided below. Further detail is provided in Appendix E. 

Figure 4 shows the prevalence of each feature within the dataset, and Figure 5 presents the 
linear coefficients of determination between each of the features. The key observations 
from these figures are: 

• The MALPV/eLPV ride quality data were incomplete. As there was a need to have all 
features present for the development of the machine learning model, the inclusion 
of the LPV data would have resulted in an unacceptable amount of data loss (i.e. 
lengths removed from the analysis because they had incomplete data sets).  This was 
primarily a result of the move from LPV to eLPV in 2014, discussed above. As 
removal of ride quality as a maintenance factor was considered desirable, a need 
was identified for a process to address this issue. 

• The data on cracking, deflection, trafficking, and base type were present in only 
approximately 30% of rows. This had the potential to lead to a large amount of data 
loss. Therefore methodologies for filling these data would need to be implemented. 
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Figure 3: Summary data processing workflow 

Treatment data Condition data 

Treatment data 

1. Combine all Construction layer data tables. 

2. Calculate the sub-section length, and 

wheelpath independent xsp_code. 

3. Merge with the data the network 

definition table. 

4. Filter to remove erroneous data. 

5. Resample data to obtain one entry per 

sub-section i.e. remove the effect of 

multiple wheelpaths. 

6. Export data to ‘Treatment.csv’. 

Condition data 

1. For each survey year merge the 

SCRIM and TRACS data by averaging 

the SCRIM data in overlapping TRACS 

sub-sections. 

2. Report the number of SCRIM sub-

sections averaged for each TRACS 

sub-section. 

3. Concatenate the data for each survey 

year into a single dataframe. 

4. Export data to ‘Condition.csv’. 

‘Treatment.csv' 'Condition.csv' 

Preparing the machine learning dataset: 

1. Merge the Treatment and Condition data into a single dataframe by copying the Inventory 

data to the Condition data for overlapping sub-sections. 

2. Filter to remove erroneous data. 

3. Initial data exploration and feature selection / creation. 

4. Filling missing data to produce a completely filled matrix of values. 

5. Standardize the data by converting non-numerical data to numerical, setting the means to 0, 

and setting standard deviations to 1. 

6. Balance data to ensure that it equally represents treated and non-treated lengths. 

‘Machine_learning.csv’ 
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• Strong correlation was observed between skid resistance and skid difference.  It was 
decided that scrim difference should be removed from the model, to reduce co-
dependency in the data. 

• The majority of data in the dataset was associated with pavements that had not 
been treated (which may be expected given only a few percent of the network is 
maintained each year) - Figure 6. If this dataset were provided to a machine learning 
algorithm it would be likely that the algorithm would develop a strong preference 
(bias) for not predicting a need for treatment. For training it would be necessary to 
balance the dataset such that the dataset was equally representative of treated and 
non-treated sections. 

 

Figure 4: Distribution of initial model features 

 

Figure 5: Correlations between initial model features 
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Figure 6: The prevalence of treatment types before balancing 

 

5.3 Data filling 

To accommodate the missing LPV data, the 3m and 10m MALPV / eLPV parameters were 
consolidated into a single Roughness Index (RI) using Equation 1. These were then 
standardised during the data standardisation process so that RI value obtained using eLPV 
and MALPV could be directly compared (see below). To accommodate the correlation 
between skid measurements, skid difference was removed from the list of model features. 

A staged data filling process was used to maximise the availability of data. This process was 
applied to the cracking, deflection, trafficking, and base type data: 

• For sub-sections/survey years not containing cracking data, the mean cracking value 
for the same sub-section from an adjacent survey year was accepted. 

• For sub-sections/survey years not containing deflection category or base type data, 
the modal values for the same sub-section from an adjacent survey year was 
accepted. 

• For sub-sections/survey years not containing trafficking data, the mean trafficking 
value for the same sub-section, from an adjacent survey year was accepted. As there 
were still significant gaps, for any remaining sub-sections/survey years not 
containing trafficking data the mean trafficking value for the whole network was 
accepted. 

After the above had been carried out the data were filtered to remove any rows where 
there was an empty value in any row. 

5.4 Data standardisation 

After the above actions were completed, the data were standardised, this consisted of: 
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• Converting any non-numerical categorical data to numerical data. This was achieved 
using scikit-learn’s LabelEncoder. (Scikit-learn, 2022a) 

• Setting the means of each feature to zero. This was achieved by subtracting the 
feature mean from the feature value. 

• Setting the standard deviations of each feature to 1. This was achieved by dividing 
the feature value by the feature standard deviation. 

The processes resulted in approximately 14,725km (reported in nominally 100m delimited 
lengths) containing the following features: 

• Treatment. A description of if the pavement sub-section was treated or not. This is 
the target that the Digital Engineer aimed to predict. 

• Condition. Rutting, Texture depth, Roughness index, Cracking, Deflection category 

• Contextualizing. Trafficking, Surface age, Sub-surface age, Base age, Surface material 
type, Sub-surface material type, Base material type, Surface thickness, Operational 
area, Operational environment, Carriageway type 

5.5 Data balancing 

The final stage of data wrangling was to balance the data such that the dataset equally 
represented lengths that had been treated and not treated. This was achieved by removing 
rows relating to treated sections until the data were balanced; the removal of rows was 
weighted by ‘survey_year’ so that data relating to more recent surveys would be biased 
over older surveys. 

Following the completion of the filling, standardisation and balancing processes, the dataset 
was such that there was an equal number of rows for each model feature (i.e. the bars in 
Figure 4 became all of equal height), and the linear coefficients of determination between 
each of the features were as shown in Figure 7. It can be seen that, in the final dataset, 
instances of high between-feature correlations were significantly reduced. 

 

Figure 7: Correlations between final model features 
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6 Machine learning model development and selection 

6.1 Model selection 

A number of machine learning and deep learning algorithms were considered for the Digital 
Engineer, as summarised below. Further descriptions of these are provided in Appendix C. 
All of these models seek to assign a category (treat or no-treat) to an input1: 

• Nearest Centroid (NC); Assigns a category to an input by determining the shortest 
distance to the category centroids (the average location of categories) within an n 
dimensional (nD) feature space2. 

• k Nearest Neighbours (kNN); Assigns a category to an input by determining the 
nearest k category neighbours within an nD feature space and using these 
neighbours to vote on the category of the input. 

• Random Forest Classifier (RFC); Uses a ‘forest’ of decision trees to assign a category 
to an input variable. The decision trees are built to most ‘cleanly’ separate the 
modelled categories based on the model features. 

• Support Vector Machines (SVM); Separates an nD feature space into sectors which 
most ‘cleanly’ separate the modelled categories based on the model features. A 
category is assigned to an input based on the sector within which it falls. 

• Voting Classifier (VC); Utilises multiple algorithms to collect a group of votes 
regarding the category to be applied to an input. 

Table 3 summarises the strengths and drawbacks of these models within the context of this 
work. 

6.2 Implementation 

The machine learning models used in this work were the implementations from the open 
source scikit-learn Python library. This provided a framework within which all the models 
listed in Table 3 could be applied, along with a common Application Programming Interface 
(API) for training and prediction. It also provided functions for assessing model 
performance. Scripts to prepare the data, prepare the models, train the models, perform 
predictions with the trained model, and assess the performance of the models were created 
in Python, also using other common data analysis libraries for data handling (Pandas) and 
visualisations (Matplotlib and Seaborn). This enabled each model to be trained and tested 
using the same input data to enable a fair comparison. 

  

 

1 An input is a set of data which the model has not ‘seen’ before for which a category is to be assigned. 

2 Where n = the number of model features 
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Table 3: Summary of the strengths and drawbacks of various machine learning models 
considered for the Digital Engineer 

Model Strengths Drawbacks 

NC Models are very small in size. 

Models are computationally cheap 
to store and query. 

Does not require training. 

Suffers from the curse of dimensionality. 

Does not cope well with diffuse groups of 
categories. 

Model is a ‘black box’. 

kNN Does not require training. Can be computationally expensive to carry out 
predictions. 

Model size scales with data size. 

Suffers from the curse of dimensionality. 

Does not cope well with diffuse groups of 
categories. 

Model is a ‘black box’. 

RFC Can perform well with diffuse 
category groups. 

Allows trees to be interrogated to 
allow decision process to be 
understood. 

Model training can be computationally 
expensive. 

Suffers from the curse of dimensionality. 

Resultant models can be very large. 

Can suffer from over fitting. 

SVM Can perform well with diffuse 
category groups. 

Suffers from the curse of dimensionality. 

Can be computationally expensive to train. 

Model is a ‘black box’. 

VC Allows a more precise 
determination of category. 

Can be very computationally expensive. 

Can create very large models. 

6.3 Training data 

The training was conducted using 80% of the available dataset, with the remaining 20% 
being held for testing. When splitting data to train the machine learning models, care had to 
be taken to split the data such that pavement sections appearing in the training dataset did 
not appear in the testing dataset. This ensures that the test dataset only contains data that 
the model has not ‘seen’ during training. This was accomplished using scikit-learn’s 
‘GroupShuffleSplit’ tool (Scikit-learn, 2022b), which is a utility provided by scikit-learn to 
split data, whilst ensuring that no group appears in both the training and testing sets of the 
same split. 

6.4 Model training and use 

Machine Learning Models were initially trained using their default hyperparameters (model 
training settings). Each of the model types listed in Section 6.1 were investigated and 
trained. This was done using scikit-learn’s toolbox of functions. First the model was trained 
using the ‘fit’ function. This feeds the training data to scikit-learn’s implementation of each 
model and returns the trained model. The trained model is used for predicting treatments 
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on the test dataset and saved for later use. To obtain predictions, the test data is fed to the 
trained model returned by the training function. 

Later in the process, the hyperparameters of some of the models were varied to see if 
improved performance could be achieved. Hyperparameters are properties of the training 
process, whereas parameters are values in the model itself. The tuning of the 
hyperparameters was done using further tools provided in the scikit-learn library. This 
required multiple runs of training for the models being tuned.  
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7 Performance of the Digital Engineer 

7.1 Comparison to the treatments in the test dataset 

The performance of the trained models was investigated by applying the test data (the 
remaining 20% of the available dataset, with no overlap with the training dataset) within the 
trained model to obtain model predictions of the treatments required for each pavement 
sub-section. These predictions were then compared with actual treatments carried out on 
these sub-sections. 

The performance was assessed using ‘accuracy scores’, which quantify the proportion of 
sub-sections cases in which the model made an accurate prediction of the treatment carried 
out (e.g. an accuracy score of 0.8 means that the model correctly predicted the treatments, 
including no treatment, for 80% of sub-sections). Four categories of accuracy scores were 
calculated: 

• True positives for treated sub-sections (True_pos_treat): Where the model 
predicted that a sub-section received a treatment, and this was actually treated 

• True positives for non-treated sub-sections (True_pos_no_treat): Where the model 
correctly predicted that a sub-section did not receive a treatment, and it was not 
actually treated 

• False positives for treated sub-sections (False_pos_treat): where the model 
predicted that a sub-section received a treatment, and it was not actually treated 

• False positives for non-treated sub-sections (False_pos_no_treat): where the model 
predicted that a sub-section did not receive a treatment, but it was actually treated 

This was necessary because of the un-balanced nature of the network in terms of those 
lengths which are treated or not. The data suggested that approximately 6.3% of the 
National Highways network is treated annually (and therefore approximately 93.7% of the 
network is not treated). This adds importance to the False_pos_treat metric, because even a 
low tendency to report false positive predictions of treatment score (as a percentage) could 
be result in a large proportion of the network being falsely predicted to require 
maintenance in relation to the proportion of the network actually maintained. 

Whilst all of the models listed in Section 6.1 were investigated, initial tests identified that a 
some approaches had very poor levels of performance. As a result, only the results for RFC, 
kNN and SVM models are presented here. 

The solid- coloured bars in Figure 8 present the initial accuracy scores for the RFC, kNN and 
SVM models. It can be seen that, in the initial assessment, RFC provided the best overall 
accuracy (0.87), and the lowest level of false positives (False_pos_treat score, 0.09). Of 
these three models, SVM provided the lowest overall accuracy score (0.78). This was largely 
driven by the lower performance in correctly predicting the need for treatment 
(True_pos_treat metric). A fine-tuning phase was then undertaken in which the model 
hyperparameters were adjusted in an attempt to improve the accuracy scores for each 
model. This required re-training with new hyperparameters and repeat of the testing using 
the 20% test datasets. Model tuning was carried out using scikit-learn’s ‘GridSearchCV’ tool 
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(Scikit-learn, 2022c), which loops through predefined sets of hyperparameters to better 
match the model to the training set, enabling the optimum parameters to be selected from 
the listed hyperparameters. 

The results of the tuning exercise are presented by the striped bars in Figure 8. It can be 
seen that the tuning process improved the accuracy for the kNN and SVM models, but the 
performance of these models was still below that of the RFC. The tuning process had little 
effect on the RFC. However, given that the RFC model provided the best overall 
performance, and provided the best False_pos_treat metric score, it is proposed that this 
model would be the most appropriate for application within a Digital Engineer tool. 

 

 

Figure 8: Initial (solid) and tuned (striped) machine learning accuracy scores for three 
models 

 

7.2 Comparison to current methods 

A further assessment of the Digital Engineer (RFC model) was undertaken by comparing its 
performance with that achieved using the current National Highways rules-based methods 
(Section 2). The objective of this assessment was to determine the performance of the 
current rules- based methodology in predicting the lengths that are maintained, and to use 
this to place the performance of the Digital Engineer into context. To undertake this 
assessment it was necessary to implement a version of the current rules-based process for 
maintenance assessment. 

The advice in CS 228 (CS 228 Pavement inspection and assessment - Skidding resistance, 
2021) can be applied to identify lengths which should be considered for maintenance based 
on skid resistance data (which hence are likely to be identified primarily as safety 
treatments). In addition, the current advice in CS 230 (CS 230 Pavement maintenance 
assessment procedure, 2020) can be used to identify lengths which should be considered for 
maintenance to meet functional/engineering needs. These are identified within two 
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categories - technically simple or technically complex - referred to here as technical schemes 
for simplicity, and as a preventative maintenance category. 

The technical schemes are identified based on the following decision points: 

1. Are deflection categories available and all in Category 1 or 2? 
If no then technical scheme, if yes move to decision point 2. 

2. Are rut depths less than 11mm? 
If no then technical scheme, if yes move to decision point 3. 

3. Are there widespread visible surface defects3 in any running lane in the Section? 
If yes then technical scheme, if no then no scheme. 

The preventative maintenance schemes are based on the following criteria: 

• The surface must be of a Thin Surface Course System (TSCS) construction, 

• The surface must be greater than five years old, 

• texture depths, rut depths and eLPVs must all be within condition category 1, 

• lane fretting intensities must be <2, 

• deflection categories must be within condition categories 1 or 2, and 

• CSC must be above the investigatory level. 

The CS 228 and CS 230 rulesets were applied, using the condition and contextual data 
available to this work (Section 4), to predict treatments for each sub-section. As was 
undertaken above to assessments the performance of the Digital Engineer, overall accuracy 
and four sub-accuracy scores were determined. These results are presented in Figure 9, 
where they are compared with the accuracy scores obtained by the Digital Engineer (RFC). 

 

3 Note that the condition dataset used in this work did not contain specific values for “widespread visible 

surface defects” but did contain TRACS cracking and fretting data. Therefore, it was assumed that widespread 

surface defects were present if TRACS Cracking >2 and TRACS Fretting >20. 
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Figure 9: Digital Engineer (RFC) and current methodologies accuracy scores 

 

Figure 9 Shows that the overall accuracy of the Digital Engineer exceeds that of the other 
approaches. The True_pos_treat performance has a strong influence here, with the rules-
based methods not achieving an accuracy score better than 0.35. The performance of the 
methods is broadly comparable for the the False_pos_treat metric. However, the 
performance of the The False_pos_no_treat is surprising. The Digital Engineer significantly 
outperforms the rules-based methods, identifying a high number of treated lengths not 
identified using the rules-based approach. The rules-based methods are typically considered 
the starting point for the identification of lengths for treatment. In theory, engineers apply 
the rules and then filter down to a subset for maintenance. It might therefore be expected 
for only a few lengths to be treated that were not identified using the rules-based approach. 
This does not appear to be the case. 

7.3 Discussion 

The accuracy scores suggest there is a degree of uncertainty in the deterministic approach, 
as deterministic methods identify many schemes that will not be treated or would be 
treated with a low priority. In practice, the decisions recommended by these methods are 
augmented by several further stages of investigation and review. These further stages 
incorporate additional data sources, engineering assessments, financial assessments, 
scheduling, etc., to refine the selected sites. At the “model” stage the deterministic methods 
(as applied in this work) do not have access to these additional data sources that would be 
considered by engineers in further review stages. The Digital Engineer takes an outcome-
based approach, predicting where treatments will be carried out based on observations of 
where treatments have been carried out on other sites. This approach draws on a wider 
range of information. The higher level of performance achieved using the Digital Engineer 
suggests that these additional data sources, combined with the Machine Learning approach, 
have the potential to significantly improve the ability to identify treatment lengths using 
digital tools. 
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However, as we expand the decision process to take account of a wider range of factors, we 
move away from a distinctly technical assessment, to one in which context is included, and 
this may become increasingly important. When developing a model such as the Digital 
Engineer care needs to be taken to ensure that the model is not adversely influenced by the 
content and distribution of the data contained in the training dataset, as they may not be 
balanced. An assessment of the features that have highest influence on the model (feature 
importance, Appendix F) suggests that carriageway type, location, construction and age 
might have had a strong influence on the model, with skid resistance having the largest 
influence for the condition data component of the features.  However, whilst the training 
dataset was balanced with respect to the treat/no treat lengths, balancing did not consider 
other factors (for example the proportion of certain types of roads) which may have 
affected the model development/training process. Nevertheless, the model may also be 
reflecting the influence of current advice on engineering practice. For example, current 
guidance on the performance requirements for skid resistance (CS 228) specifies 
investigatory levels that increase with decreasing carriageway type, which may result in 
priority being given to some carriageway types for the treatment of skid resistance.  

Furthermore, whilst the model development has considered many features, there may be 
features, which were not included in the model, that influence engineers’ decisions on 
treatment. In addition, there is the risk of lurking features/variables, and lurking co-
dependent variables4.  For example, ‘operational area’ directly describes the geographical 
location of a section on the network. However, operational area may also be co-dependent 
with other features (not included in the Digital Engineer), such as sub-network length, 
budgetary information, local maintenance considerations, material types, etc. Another 
example may be trafficking. Whilst trafficking describes the number of HGVs travelling over 
a pavement section, it may also be co-dependent with operational priority5, pavement 
design, traffic speeds and road user safety. Therefore, whilst the model developed in this 
work appears to have a high level of performance, further investigation and refinement may 
be necessary to ensure that development and training data do not have an adverse effect 
on the outcomes of the model - so that it can be robustly applied over the network.  

 

4  Variables (features) that have an influence, but which we are not including, and/or features not included in 

the model that are co-dependent with some of the model features. 

5 i.e. more heavily used roads may be prioritised for maintenance as they affect more users than roads with 

lower trafficking rates. 
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8 Conclusions and recommendations 

Currently engineers utilise condition data and other contextual information to select lengths 
of the network that require treatment. The availability of digital tools to support this 
process could assist engineers in making consistent decisions, improve efficiency and 
support better long-term planning. However, current rules-based tools do not produce 
outcomes that robustly reflect the decisions that engineers would themselves make.  

This work has developed an outcome-based approach to identify locations for treatment 
(using a machine learning model deploying the Random Forest Classifier model, which has 
been named the Digital Engineer) and compared the locations identified with those that 
were actually treated. A similar comparison was also undertaken using rule-based methods. 
The accuracy scores have shown that the Digital Engineer provides an overall accuracy score 
of approximately 0.88, whereas the rules-based methods (used by National Highways) 
provide overall accuracy scores of approximately 0.55. Hence the Digital Engineer identified 
the lengths that were treated to a much higher level of accuracy, and was also more 
consistent in identifying the lengths that were not treated. 

The results suggest that measurements of pavement condition alone, as used by rules-based 
methods, are not sufficient for determining treatment needs as identified by engineers. 
Additional contextualising information is required to make an informed decision. It is 
apparent that Machine Learning techniques could be used to apply this additional 
contextualising information, in combination with the condition data, to predict locations 
where maintenance would be carried out. 

However, there are complexities in the way that models apply the data to make decisions 
on treatments. The influences of contextual factors (e.g. location, type), and their balance 
with condition, may need to be better understood and explained as the development of the 
Digital Engineer matures. This will ensure that such an approach can be trusted can be 
generally applied. 

Therefore, whilst this initial work shows the high potential of this approach, further work is 
recommended to better understand the influence and scope of the variables (factors) on 
the outcomes. This would include minimising the risk of over-fitting the model to some 
factors, and determining whether there are further factors that might affect real-world 
treatment decisions, but which have not been included in the current list of the Digital 
Engineer’s model features. 

This work has restricted its scope to a binary ‘treat’ / ‘no treat’ classification. It may be 
possible to widen the scope of the Digital Engineer to suggest treatment types. It would also 
be of value to the development of the model, and its eventual implementation, to 
understand how the Digital Engineer would be provided to end users, for example within 
Asset Management Tools (AMTs) such as TRL’s IROADS system, and how the approach 
would be used by pavement engineers in the real world.  
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Appendix A Data descriptions 

A.1 The treatment dataset 

The treatment dataset was provided in several files which segmented the SRN into lengths 
containing homogeneous constructions and attributes, with a ‘pavement_class_name’ 
which described the treatment applied to that length at the time of last treatment.  A 
separate column, ‘constr_start_date’ provided the date at which the last treatment was 
carried out on the pavement sub-section (Table 4). 

 

Table 4: treatment (construction) data table 

Column heading Data type Unit / categories Description 

road integer none A numerical description of 
‘road_number’ 

road_number text none The HAPMS road number, i.e. M4. 

Section integer none A numerical description of 
‘section_label 

section_label text none The HAPMS section label, i.e. 
0100M4/5. 

Section_sort float none Unknown 

section_length float meters The length of the HAPMS section 

section_function integer none A numerical description of 
‘section_function_name 

section_function_name text Main Carriageway, Ox 
Bow Lay-by, Roundabout, 
Slip road 

The HAPMS section function. 

Operational_area integer 1, 2, 3, 4, 6, 7, 8, 9, 10, 
13, 14, 125 

The NH operational area 

operational_area_name text not provided here for 
brevity 

A text description of 
‘operational_area’ 

data_key integer 7,8,1128 unknown 

direction_key integer 1,2,3,4,5,6 A numerical description of 
‘direction_name’ 

direction_code text CW, AC, NB, EB, WB, SB A coded description of 
‘direction_name’ 

direction_name text Clockwise, Anticlockwise, 
North, East, West, South 

The direction of the carriageway 

constr_start_date date dd/mm/yyyy hh:ss The date at which the pavement 
layer was last treated. 
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Column heading Data type Unit / categories Description 

Constr_end_date date dd/mm/yyyy hh:ss The date at which the pavement 
layer was originally constructed 

start_chainage float meters The start chainage of the sub-section 
within the pavement section 

end_chainage float meters The end chainage of the sub-section 
within the pavement section 

xsp integer none A numerical description of 
‘xsp_name’ 

xsp_code text none A coded description of ‘xsp_name’ 

xsp_name text none A description of the cross sectional 
position of the sub-section of the 
pavement over the carriageway 
width.  This is split into left and right 
wheelpaths e.g. CL1L (left wheelpath) 
and CL1R (right wheelpath) 

traf_acc_date date dd/mm/yyyy hh:ss Unknown 

layer Integer Not provided here for 
brevity 

A coded description of ‘layer_name’ 

layer_sequence integer 1 – 15 inclusive A numerical description of 
‘layer_name’ 

layer_name text Layer 1- 15 inclusive A description of the pavement layer 
indexed from the bottom layer. 

Material integer Not provided here for 
brevity 

A numerical description of ‘material 
_name’ 

material_code text Not provided here for 
brevity 

A coded description of 
‘material_name’ 

material_name text Not provided here for 
brevity 

The material comprising the 
pavement layer 

date_laid date dd/mm/yyyy hh:ss The date at which the pavement 
layer was originally constructed 

thickness integer millimetres The thickness of the pavement layer 

condition_factor integer Not provided here for 
brevity 

A numerical description of 
‘condition_factor_name’ 

condition_factor_name text Not provided here for 
brevity 

A description of the overall pavement 
condition. 

Xsp_left_offset float unknown unknown 

xsp_right_offset float unknown unknown 

road_sort integer unknown unknown 

section_function_sort integer unknown unknown 

operational_area_sort integer unknown unknown 

direction_sort integer unknown unknown 
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Column heading Data type Unit / categories Description 

pavement_class integer Not provided here for 
brevity 

A numerical description of 
‘pavement_class_name 

pavement_class_name text Inlay, Provisional, Re-
surfacing, GPR 
(Uncalibrated), Coring,  

GPR (Calibrated), 
Generated from 
Inventory, Re-
construction, Newly 
Constructed, Extracted 
from PANDEF, Not 
Specified, Surface 
Treatment, Overlay, Re-
setting Condition Factors. 

A description of the last pavement 
treatment carried out. 

 

A.2 The condition and contextualising datasets 

The TRACS and TRASS datasets were provided as combined data files for each survey year 
containing data reported over 100m sub-section lengths.  The construction data (surface, 
sub-surface, and base layers) were resampled and allocated to each 100m sub-section. The 
percentage of each 100m sub-section comprising the most prevalent material was also 
reported. Traffic data was reported in relation to specific traffic counting locations (geo-
located using latitude and longitude co-ordinates). These locations were overlaid onto the 
National Highways network to determine the closest section. A description of the resulting 
data file content (TRACS, TRASS, construction) is presented in Table 5. Sideway-force 
Coefficient Routine Investigation Machine (SCRIM) surveys are carried out annually over the 
SRN and used to evaluate skid resistance of the pavement surface. SCRIM survey data were 
downloaded from the HAPMS system covering surveys from 2005 to 2021 in separate file. A 
description of the data in these files is presented in Table 6. Further contextualising data 
was provided through the network definition and additional information (Table 7). 

 

Table 5: TRACS data table 

Column heading Data type Unit / 
categories 

Description 

section integer none A numerical description of ‘section_label’ 

section_label text none The HAPMS section 

start_chainage float meters The start chainage of the sub-section 
within the pavement section 

end_chainage float meters The end chainage of the sub-section 
within the pavement section 

date laid date dd/mm/yyyy 
hh:ss 

The date at which the material was laid. 



The application of AI to pavement assessment   

 

 

Final 33 ACA108 

Column heading Data type Unit / 
categories 

Description 

survey_start_date date dd/mm/yyyy 
hh:ss 

The date the survey was carried out. 

survey_year year yyyy The year the survey was carried out 

xsp_code text none A coded description of ‘xsp_name’ 

operational_area integer 1-10, 13, 14, 25 The NH operational area 

thickness float millimetres The thickness of the surface layer 

maximum_rut float millimetres The maximum rut measured in either 
wheelpath 

texture float millimetres The Sensor Measured Texture Depth 
(SMTD) 

(e)lpv_3m float none Either the longitudinal profile variance 
(LPV) (for materials assessed before 
2014), or the enhanced Longitudinal 
Profile Variance (eLPV) (for materials 
assessed during or after 2014). 

(e)lpv_10m 

(e)lpv_30m 

fretting float none The amount of fretting on the material 

whole_cway_cracking float none The amount of cracking on the material 

category integer 1, 2, 3, 4 The NSC category of the pavement. 

majority_material_code text Not provided 
here for brevity 

The material code of the most prevalent  
surface material in the 100m section. 

majority_material_length integer meters The length of the 100m section which is 
the ‘majority_material_code’. 

surface_age_years integer years The age of the majority surface material 

sub_majority_material_code text Not provided 
here for brevity 

The material code of the most prevalent  
material immediately beneath the surface 
in the 100m section. 

sub_majority_material_lengt
h 

integer meters The length of the 100m section which is 
the ‘sub_majority_material_length’. 

sub_age   The age of the majority material 
immediately below the surface. 

base_type text Not provided 
here for brevity 

The subbase material code. 

This_Lane_Large_Vehicle integer Vehicles per day The daily flow rate of HGVs. 
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Table 6: SCRIM data table 

Column heading Data type Unit / categories Description 

survey_start_date date dd/mm/yyyy hh:ss The date at which the survey was 
carried out. 

survey_year year yyyy The year during which the survey 
was carried out 

section_label text none The HAPMS section 

start_chainage float meters The start chainage of the sub-
section within the pavement section 

end_chainage float meters The end chainage of the sub-section 
within the pavement section 

xsp_code text none A coded description of ‘xsp_name’ 

lecf float none The Local Equilibrium Correction 
Factor, is used to correct skid 
resistance data for seasonal, and 
between year variation and is used 
in the calculation of 
‘characteristic_skid_coefficient’. 

characteristic_skid_coeffici
ent 

float none The pavement skid resistance 
corrected for seasonal, between 
year variation, and test speed. 

site_definition_code text Not presented here for 
brevity 

The skid resistance investigatory 
level as described in CS 228 
(Highways England, Transport 
Scotland, Welsh Government, 
Department for Infrastructure, 
2021) 

investigatory_level integer Not presented here for 
brevity 

A coded representation of 
‘site_definition_code’. 

scrim_difference float none The difference between the 
characteristic_skid_coefficient and 
in-service requirement. 
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Table 7: Network information/definition summary table 

Column heading Data type Unit / categories Description 

road_class Integer 1, 2, 3 A numerical description of 
‘road_class_name’ 

road_class_code text A, AM, M A coded description of 
‘road_class_name 

road_class_name text A, AM, M The road class. 

road_class_sort integer unknown unknown 

road integer none A numerical description of 
‘road_name’ 

road_number text none A coded description of 
‘road_name’ 

road_name text none The road number relating to the 
section. 

road_sort integer unknown unknown 

section integer none A numerical description of 
‘section_label 

section_label text none The HAPMS section label, i.e. 
0100M4/5. 

section_sort float unknown unknown 

section_start_date date dd/mm/yyyy hh:ss The date at which the section was 
last treated. 

section_end_date date dd/mm/yyyy hh:ss The date at which the section was 
originally constructed 

section_length float meters The length of the section 

section_function integer 1, 2, 3, 4 A numerical description of 
‘section_function_name’ 

section_function_code text MAIN, SLIP, OB, RBT A coded description of 
‘section_function_name’ 

section_function_name text Main Carriageway, Slip 
Road, Ox Bow Lay-by, 
Roundabout 

The function of the road section 

section_function_sort integer unknown unknown 

core_status Integer unknown unknown 

core_status_name text unknown unknown 

tern_status integer 792, 794, 795 unknown 

tern_status_name text Yes, Not Specified, No unknown 

ha_region integer unknown A numerical description of 
‘ha_region_name’ 

ha_region_name text unknown The HA region in which the section 
occurs 
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Column heading Data type Unit / categories Description 

ha_regional_control_centr
e 

integer Not provided here for 
brevity 

A numerical description of 
‘ha_regional_control_centre_nam
e’ 

ha_regional_control_centr
e_name 

text Not provided here for 
brevity 

unknown 

go integer unknown unknown 

go_name text unknown unknown 

round1_area integer unknown unknown 

round1_area_name text unknown unknown 

ha_category integer 5516, 5517, 5518, 5519 A numerical description of 
‘ha_category_name’ 

ha_category_name text Strategic, Not Specified, 
Regional, Toll Road or 
Route 

The HA category related to the 
section 

operational_area integer Not provided here for 
brevity 

The NH operational area 

operational_area_code text Not provided here for 
brevity 

A coded description of 
‘operational_area’ 

operational_area_name text Not provided here for 
brevity 

A text description of 
‘operational_area’ 

operational_area_sort integer unknown unknown 

data_key integer unknown unknown 

direction integer 1,2,3,4,5,6 A numerical description of 
‘direction_name’ 

direction_code text CW, AC, NB, EB, WB, SB A coded description of 
‘direction_name’ 

direction_name text Clockwise, Anticlockwise, 
North, East, West, South 

The direction of the carriageway 

direction_sort integer unknown unknown 

permanent_lanes integer 1, 2, 3, 4, 5, 6 The number of permanent lanes 
present in the section 

single_or_dual integer 47, 49, 50, 51, 1612 A numerical description of 
‘single_or_dual_name’ 

single_or_dual_code text DUALF, DUALT, S1W, 
S2W 

A coded description of 
‘single_or_dual_name’ 

single_or_dual_name text Dual Carriageway (Not 
Nominated), Dual 
Carriageway 
(Nominated), One Way 
Single Carriageway, Two 
Way Single Carriageway 

A description if the pavement is a 
single or dual carriageway 

single_or_dual_sort integer unknown unknown 
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Column heading Data type Unit / categories Description 

environment integer 8, 9, 10, 11 A numerical description of 
‘environment_name’ 

environment_code text NS, R, S, U A coded description of 
‘environment_name’ 

environment_name text Not Specified, Rural, 
Suburban, Urban 

The environment in which the 
section exists. 

environment_sort integer unknown unknown 

local_authority integer Not provided here for 
brevity 

A numerical description of 
‘local_authority_name’ 

local_authority_code integer Not provided here for 
brevity 

A coded description of 
‘local_authority_name’ 

local_authority_name text Not provided here for 
brevity 

The local authority within which 
the pavement exists. 

local_authority_sort integer unknown unknown 

plan_reference text unknown unknown 

start_chainage integer meters The start chainage of the section. 
This is always zero. 

end_chainage integer meters The end chainage of the section. 
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Appendix B Data Wrangling 

B.1 Treatment data 

The treatment data were prepared as follows: 

1. The data from the construction data files were concatenated to a single dataframe. 

2. Additional columns were created to describe the section lengths and the cross-
sectional positions. 

3. The data was merged with the Network Definition data. 

4. Filters were applied to leave rows: 

a. Only including carriageway sections. 

b. Only including data from 2005. 

c. Having sub-section lengths >50m. 

d. Only having treatments of Inlay, Overlay, Re-construction, Re-surfacing, or 
Surface Treatment. This ensured that only sections subject to a pavement 
treatment were included in the dataset. 

This resulted in data containing a single row for each sub-section, describing when 
the sub-section was last treated and what that treatment was, and where the 
pavement construction and treatment was the same for each wheelpath. 

5. Continuous sub-sections (connecting) within each section that were treated with the 
same treatment were joined together. This was carried out to improve the ease of 
joining the condition data during later data processing stages as well as overall data 
retention. 

The resulting dataframe ‘Treatment.csv’ therefore contained data where each row 
represented a pavement sub-section where the same treatment was applied at 
(approximately) the same time. It is appreciated that within each pavement sub-section 
there is the potential for a mixture of material types but this was necessary for data 
retention purposes and is mitigated by the processing of the pavement condition data. A 
description of the data in Treatment.csv is presented in Table 8. 



The application of AI to pavement assessment   

 

 

Final 39 ACA108 

Table 8: Treatment.csv data description 

Column heading Data type Unit / categories Description 

section integer none A numerical description of ‘section_label’ 

section_label text none The HAPMS section 

road_number text none The HAPMS road number, i.e. M4. 

single_or_dual_name text Dual Carriageway (Not 
Nominated), Dual 
Carriageway 
(Nominated), One Way 
Single Carriageway, Two 
Way Single Carriageway 

A description if the pavement is a single 
or dual carriageway 

environment_name text Not Specified, Rural, 
Suburban, Urban 

The environment in which the section 
exists. 

direction_code text CW, AC, NB, EB, WB, SB A coded description of ‘direction_name’ 

section integer none A numerical description of ‘section_label’ 

xsp_code text none A coded description of ‘xsp_name’ 

lane integer none A description of the running lane derived 
from the xsp code. 

section_function_name text Main Carriageway, Ox 
Bow Lay-by, Roundabout, 
Slip road 

The HAPMS section function. 

operational_area integer 1, 2, 3, 4, 6, 7, 8, 9, 10, 
13, 14, 125 

The NH operational area 

section_length_(m) float meters The length of the HAPMS section. 

start_chainage_(m) float meters The start chainage of the sub-section 
within the pavement section 

end_chainage_(m) float meters The end chainage of the sub-section 
within the pavement section 

subsection_length_(m) float meters The length of the sub-section. 

constr_start_date date dd/mm/yyyy hh:ss The date at which the pavement layer 
was last treated. 

pavement_class_name text Inlay, Overlay, Re-
construction, Re-
surfacing, Surface 
Treatment 

A description of the last pavement 
treatment carried out. 

group integer none The group number. 
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B.2 Condition data 

For each year, the SCRIM data were merged with the TRACS data. Because the SCRIM data 
are nominally 10m delimited and the TRACS data are nominally 100m delimited this merge 
was carried out by averaging the “characteristic_skid_coefficient” data occurring within 
each TRACS sub-section. The number of data points averaged were reported in the output 
data. These were then concatenated into a single dataframe and saved as a final 
‘Condition.csv’.  

The resulting ‘Condition.csv’ therefore contained data where each row represented a 
nominally 100m length of pavement and the condition, trafficking, and material data. A 
description of the data in Condition.csv is presented in Table 9. 

 

Table 9: Condition.csv data description 

Column heading Data type Unit / categories Description 

section integer none A numerical description of 
‘section_label’ 

section_label text none The HAPMS section 

start_chainage float meters The start chainage of the sub-
section within the pavement 
section 

end_chainage float meters The end chainage of the sub-
section within the pavement 
section 

sub_section_length float meters The length of the sub-section 

date laid date dd/mm/yyyy hh:ss The date at which the material was 
laid. 

survey_start_date date dd/mm/yyyy hh:ss The date at which the survey was 
carried out. 

survey_year year yyyy The year during which the survey 
was carried out 

xsp_code text none A coded description of ‘xsp_name’ 

operational_area integer 1, 2, 3, 4, 6, 7, 8, 9, 10, 
13, 14, 125 

The NH operational area 

thickness float millimetres The thickness of the surface layer 

maximum_rut float millimetres The maximum rut measured in 
either wheelpath 

texture float millimetres The Sensor Measured Texture 
Depth (SMTD) 

(e)lpv_3m float none Either the longitudinal profile 
variance (LPV) (for materials 
assessed before 2014), or the 
enhanced Longitudinal Profile 

(e)lpv_10m 

(e)lpv_30m 



The application of AI to pavement assessment   

 

 

Final 41 ACA108 

Variance (eLPV) (for materials 
assessed during or after 2014). 

fretting float none The amount of fretting on the 
material 

whole_cway_cracking float none The amount of cracking on the 
material 

category integer 1, 2, 3, 4 The deflection category of the 
pavement. 

characteristic_skid_coefficien
t 

float none The characterisation of skid 
resistance of the pavement 
surface. 

num_scrim_data integer none The number of SCRIM data points 
included in the calculation of 
‘characteristic_skid_coefficient’ for 
the sub-section length. 

majority_material_code text Not provided here for 
brevity 

The material code of the most 
prevalent  surface material in the 
100m section. 

majority_material_length integer meters The length of the 100m section 
which is the 
‘majority_material_code’. 

surface_age_years integer years The age of the majority surface 
material 

sub_majority_material_code text Not provided here for 
brevity 

The material code of the most 
prevalent  material immediately 
beneath the surface in the 100m 
section. 

sub_majority_material_lengt
h 

integer meters The length of the 100m section 
which is the 
‘sub_majority_material_length’. 

sub_age integer years The age of the majority material 
immediately below the surface. 

base_type text Not provided here for 
brevity 

The subbase material code. 

This_Lane_Large_Vehicle integer Vehicles per day The daily flow rate of HGVs. 

B.3 Preparing the data for machine learning 

The preparation of data for machine learning was separated into the following stages: 

1. Merging the Treatment and Condition data 

2. Initial data filtering 

3. Initial data exploration and feature selection / creation 

4. Data filling  

5. Data standardisation 
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6. Data balancing 

7. Final data exploration 

B.3.1 Merging the Treatment and Condition data 

The Condition and Treatment data were merged in a similar manner to the SCRIM and 
TRACS data. Because the Condition data were 100m delimited and the Treatment data were 
not distance delimited, this merge was carried out by identifying the Treatment data which 
overlapped the Condition data and assigning the corresponding Treatment data to each 
nominal 100m sub section in the Condition data. 

In addition to geographically merging the Treatment and Condition datasets, these datasets 
were also merged temporally. That is, the Condition data are available for a time period 
between 2005 and 2021 (inclusive). Condition data collected before treatment was carried 
out were assigned the ‘pavement_class_name’ (treatment carried out) for each sub-section.  
Condition data collected after treatment were likewise assigned a ‘pavement_class_name’ 
of ‘none’. An example of this is provided in Table 10. 

 

Table 10: Example of joining the Treatment and Condition data 
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0100A36/139 200 300 2008 2013 -5 Inlay 

0100A36/139 200 300 2009 2013 -4 Inlay 

0100A36/139 200 300 2010 2013 -3 Inlay 

0100A36/139 200 300 2011 2013 -2 Inlay 

0100A36/139 200 300 2012 2013 -1 Inlay 

0100A36/139 200 300 2013 2013 0 treatment_year 

0100A36/139 200 300 2014 2013 1 none 

0100A36/139 200 300 2015 2013 2 none 

0100A36/139 200 300 2016 2013 3 none 

0100A36/139 200 300 2017 2013 4 none 

0100A36/139 200 300 2018 2013 5 none 

0100A36/139 200 300 2019 2013 6 none 

0100A36/139 200 300 2020 2013 7 none 

0100A36/139 200 300 2021 2013 8 none 
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B.3.2 Initial data filtering 

Initial data filtering was carried out to obtain data for each sub-section, for which: 

• The Treatment data overlapped the Condition data 

• The ‘treatment_year’ and ‘survey_year’ is different. This was carried out to reject 
data where the Condition data could not have had an influence on a treatment being 
carried out or not 

• There was at least three years between the most recent ‘survey_year’ and the actual 
‘survey_year’. This was carried out to improve the confidence in sections identified 
as not having been treated 

• There was at least three years of condition data before the treatment. This was to 
account for the ‘lag’ between road surface condition monitoring and treatment 
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Appendix C Machine Learning models 

C.1 Nearest centroid 

Nearest centroid identifies the nearest average value (centroid) in an n-dimensional feature 
space and assigns a classification based on that assigned to the nearest average value  An 
example of this for a 2 dimensional feature space with four classes is provided in Figure 10. 
In this example the centroid for class 3 is nearest to the new input value (‘x’) and so it is 
assigned a class of 3. 

 

 

Figure 10: Example of nearest centroid (centroids are large grey series markers, the value 
to be classified is marked as a red ‘X’) 

C.2 K Nearest neighbours (kNN) 

A KNN model ‘votes’ on the class of a new input value based on the classes of the k number 
of neighbours to the new input value in an n dimensional feature space. In the case of a tie 
in voting the model will assign a class at random, or calculate the total distance to each class 
and assign that which is lowest. An example of this process is show in Figure 11. In this 
example the kNN model has received 3 ‘votes’ for class 3 and 2 votes for class 2 so class 3 is 
assigned to the new input. 
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Figure 11: Example of k nearest neighbours with k=5 

C.3 Random Forest Classifier (RFC) 

A random forest classifier is based on the framework of a recursive decision tree. A decision 
tree functions by applying a set of binary rules to the model data in an iterative process 
which ‘splits’ the data into increasingly smaller parts until the decision tree terminates at a 
leaf node and produces a classification. The rules to be applied to the data are selected by a 
brute force method and the rule which maximises the ‘purity’ of the data as determined by 
the Gini index which is a measure of how well a rule has split the data by the defined 
classes. 

A random forest classifier is a natural progression of recursive decision trees.  In a random 
forest classifier a ‘forest’ of decision trees are trained on various sub-sets of the training 
data.  This forest of trees allows for the classification of a new input value to be carried out 
multiple times (once for each tree in the forest) and a vote taken on the class that should be 
assigned to that input. 

C.4 Support Vector Machines (SVM) 

Support vector machines seek to segregate an n dimensional feature space into sectors 
which best separate the categories within that space. This can be thought of as drawing 
lines (vectors) through the space which maximise the distance between categories. A 
heavily simplified example of this process is show in Figure 12, which presents a two 
dimensional feature space with two classes. In reality, higher order geometries are used to 
segregate feature spaces but an example using linear vectors is provided here for simplicity. 
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Figure 12: Example of support vector machines 

 

Figure 12 shows the maximal margin separating the two classes (the solid line) between the 
two broken lines (the support vectors) which represent the maximum limits of the classes. 
In this example the new input (the red “x”) sits above the maximum margin separating Class 
1 and Class 2 i.e. within the Class 1 category. The new input data would therefore be 
assigned Class 1. 

C.5 Voting classifier 

A voting classifier is an amalgamation of the previous methods mentioned in this section. A 
voting classifier will make predictions based on each of the models assigned to it and use 
the results of the predictions from individual models to ‘vote’ on the correct classification 
for a new input. 

For example: 

• The following models are assigned to a voting classifier: 

o RFC 

o kNN 

o SVC 

• The models returned the following classifications: 

o RFC (Class 0) 

o kNN (Class 0) 

o SVC (Class 1) 

If equal weight is applied to each vote then the voting classifier would assign Class 0 to the 
new input data.   
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Appendix D Final data exploration 

To quality assure the data before assessing them with machine learning, the ‘balanced’ 
dataset was explored. The key findings from this data exploration, and the conclusions from 
it are provided below, a full suite of findings can be found in Appendix F. Figure 13 presents 
the linear coefficients of determination between each of the continuous model features. 
Here it can be observed that none of the final model features are well correlated with any 
other model feature. This has removed the co-dependency in the data originally observed. 

 

 

Figure 13: Correlations between final model features 

 

Figure 14 confirms that the data have been correctly balanced as the ‘0’ treated data (i.e. 
the data relating to lengths that were not treated.) is now at 50% of the total dataset. 

 

 

Figure 14: The prevalence of treatment types after balancing 
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D.1.1 Machine learning data description 

The processes described above resulted in a dataset containing 147,254 rows representing a 
total length of approximately 14,725km). A description of the data in this dataset is 
presented in Table 11. 

 

Table 11: Machine learning data description 

Column heading Data type Unit / categories Description 

treatment_binary integer 0, 1  The sub-section was treated (1) or not 
treated (0) 

treatment_multi integer 0, 1, 2, 3, 4 A description of the treatment carried out. 

maximum_rut float none A standardised description of the amount of 
rutting present on the sub-section. 

texture float none A standardised description of the texture 
depth on the sub-section. 

RI float none A standardised description of the 
longitudinal profile on the sub-section. 

whole_cway_cracking float none A standardised description of the cracking 
on the sub-section. 

category integer none The deflection category on the sub-section. 

This_Lane_Large_Vehicle float none A standardised description of the trafficking 
on the sub-section. 

surface_age_years float none A standardised description of the surface 
age on the sub-section. 

sub_age float none A standardised description of the sub-
surface age on the sub-section. 

majority_material_code integer Not provided here 
for brevity 

A numerical description of the material 
code of the most prevalent  surface material 
in the sub-section. 

sub_majority_material_code integer Not provided here 
for brevity 

A numerical description of the material 
code of the most prevalent  sub-surface 
material in the sub-section. 

base_type integer Not provided here 
for brevity 

A numerical description of the material 
code of the most prevalent base material in 
the sub-section. 

thickness float none A standardised description of the thickness 
of the surface layer on the sub-section. 

operational_area integer 1, 2, 3, 4, 6, 7, 8, 
9, 10, 13, 14, 125 

The NH operational area 

characteristic_skid_coefficien
t 

float none A standardised description of the corrected 
skid coefficient on the sub-section. 

environment_name integer 0, 1, 2 A numerical description of the environment 
name of the sub-section. 
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Column heading Data type Unit / categories Description 

single_or_dual_name integer 0, 1, 2, 3 A numerical description of the 
single_or_dual_name name of the sub-
section. 

group integer none The group assigned to the sub-section 

survey_year year YYYY The year that the condition surveys were 
carried out. 
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Appendix E Initial data exploration 

E.1 The distribution of the initial model features 

Table 12: The frequency distributions of the initial model features 

 

The distribution of carriageway types 

 

The distribution of environments 

 

The distribution of characteristic skid 
coefficients 

 

The distribution of skid differences 
 

The distribution of operational areas 

 

The distribution of surface layer thicknesses 

 

The distribution of foundation (base) types 

 

The distribution of sub surface material ages 

 

The distribution of surface material ages 

 

The distribution of daily HGV trafficking 
rates 

 

The distribution of deflection categories 

 

The distribution of cracking values 
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The distribution of rutting values 

 

The distribution of texture depth values 

 

The distribution of survey years 

 

The distribution of 3m LPV values 

 

The distribution of 10m LPV values 

 

The distribution of 30m LPV values 

 

The distribution of 3m eLPV values 

 

The distribution of 10m eLPV values 

 

The distribution of 30m eLPV values 
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Appendix F Final data exploration 

F.1 The distribution of final model features 

Table 13: The frequency distributions of the final model features 

 

The distribution of carriageway types 

 

The distribution of environments 

 

The distribution of standardised 
characteristic skid coefficients 

 

The distribution of operational areas 

 

The distribution of standardised surface 
layer thicknesses 

 

The distribution of foundation (base) types 

 

The distribution of standardised sub surface 
material ages 

 

The distribution of standardised surface 
material ages 

 

The distribution of standardised daily HGV 
trafficking rates 

 

The distribution of deflection categories 

 

The distribution of standardised cracking 
values 

 

The distribution of standardised rutting 
values 
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The distribution of standardised texture 
depth values 

 

The distribution of survey years 

 

The distribution of standardised rutting 
index 

F.2 Feature Importance 

The toolkit provided functions to characterise the influence of each model feature in determining the outcome of the model (treat / do not 
treat).The assessment of feature importance is presented in Figure 15 as a box plot, where the magnitude of the feature importance is shown 
on the x-axis and the features are presented on the y-axis.  

 

Figure 15: Ranking of importance of features to the outcome of the model 



  

 

 

 
 

The application of artificial intelligence to road pavement 
maintenance assessment 

 

Currently, roads authorities apply deterministic (rule based) digital tools to recommend lengths 
that should be considered for maintenance (using condition data provided by automated and 
human assessors). However, these recommendations do not robustly reflect the decisions that 
engineers would themselves make. This work investigates how an outcome-based model could be 
developed to better identify lengths for treatment. The development of the model draws on 
network level condition data (from the Strategic Road Network) that includes visual condition, 
roughness and skid resistance, and contextualising information such as construction, traffic, 
material and age. These are collated and aligned with data on the actual treatments that were 
carried out on the network, in order to train and test a set of machine learning models. The best 
performing of these models deploys the Random Forest Classifier, which is referred to in this work 
as the Digital Engineer. 

A comparison between the locations identified for treatment by the Digital Engineer, the locations 
identified by rules-based tools, and the locations that were actually treated, shows that the Digital 
Engineer provides a significantly higher level of overall accuracy in the identification of these 
lengths. The results suggest that additional contextualising information assists in achieving 
outcomes from digital tools that better agree with the decisions made by engineers, and that 
Machine Learning techniques may be used to apply this additional information. It is recommended 
that further development and testing of the Digital Engineer approach should: better understand 
the influence of features on tool decisions; more comprehensively verify the model; and determine 
the route to implementation. 
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