

Effect of vehicle defects in road accidents

R W Cuerden, M J Edwards and M B Pittman

Transport Research Laboratory

PUBLISHED PROJECT REPORT PPR565

Effect of vehicle defects in road accidents

by R W Cuerden, M J Edwards and M B Pittman

Prepared for: PPRO 04/045/004

Effect of Vehicle Defects in Road Accidents

Client: Department for Transport,

(Dr B Moran)

Copyright Transport Research Laboratory March 2011

The views expressed are those of the author(s) and not necessarily those of Department for Transport.

	Name	Date Approved
Project Manager	M B Pittman	24/03/2011
Technical Referee	M J Edwards	24/03/2011

When purchased in hard copy, this publication is printed on paper that is FSC (Forest Stewardship Council) and TCF (Totally Chlorine Free) registered.

TRL PPR565

Contents

Ex	ecutive	summary		iii
1	Introd	uction		5
2	Object	ives		7
3	Backg	round		8
	3.1	Europear	n legislation	8
	3.2	MOT info 3.2.1	rmation MOT Database Scheme	10 12
	3.3	Accident 3.3.1 3.3.2 3.3.3 3.3.4		13 13 13 14 14
4	Appro	ach		15
	4.1	Objective	e 1: Prevalence and nature of vehicle defects	15
	4.2		es 2 and 3: Likely impacts to road safety (if any) to changes to iodical inspections	15
5	Preval	ence and	nature of vehicle defects	16
	5.1		alence of vehicles with roadworthiness defects in the UK opulation MOT failure rates by vehicle class, age and mileage MOT test items, Reasons for Rejection Summary of the findings	16 19 23 24
	5.2		alence of vehicles with roadworthiness defects in the UK rash population Review of in-depth accident databases	25 26
6	Likely inspec	-	road safety (if any) to changes to MOT periodical	28
	6.1		n based on a hypothetical relationship between MOT defects in and casualties Proportion of vehicle fleet with defects Correlation of MOT defects to accidents Predict the annual casualties based on changes to MOT test frequency Limitations of the model	28 29 31 35 39
	6.2	Prediction	n based on a comparison with the German roadworthiness experience Introduction AUTOFORE analysis GB analysis Limitations of the model	40 40 41 43 44
	6.3	Retest or	n the basis of miles travelled since last inspection	44
7	Conclu	ısions		45

TRL i PPR565

Acknowledge	ments	47
References		47
Appendix A	Frequency of testing in EU-25 states in 2006	48
Appendix B	MOT Scheme Database all tests (2008 and 2009)	49
Appendix C	In-depth accident data	79
Appendix D	Reported accidents, vehicle users and pedestrian casualties: by combination of vehicles	88
Appendix E	MOT Scheme Database Normal tests only (2009)	90

Executive summary

All vehicles deteriorate in service and this can have an adverse impact upon safety and the environment. National and European legislation requires motorists to maintain their vehicles in a roadworthy condition, but not all do so. Roadworthiness testing exists to ensure that at least a minimum level of benefits in a vehicle's original design and manufacture are retained in service. A roadworthy vehicle may be defined as one in which there are no safety and/or emission related defects that would prevent the vehicle passing the periodic motor vehicle inspection scheme in its country of use. Mandatory inspections provide an immediate benefit, which then decreases over time, but do have an associated cost for motorists. It is important therefore, to ensure that the right balance is struck between road and vehicle safety and environmental standards on the one hand and the burden of legislation on the other.

European Union legislation requires a first roadworthiness test for cars no later than four years after first registration and no less frequently than once every two years thereafter. For more than 40 years, cars in Britain have been tested three years after first registration and annually thereafter. There have been considerable technological advances in vehicle safety, emissions and reliability since that period, which means that many manufacturers now issue warranties with new vehicles that are longer than three years. Many other countries, including France, Germany, Netherlands and Sweden, conduct checks at less stringent frequencies than Britain.

The objectives of this project were to:

- 1. With a focus on passenger cars, light vans (up to 3.5 tonnes) and motor cycles determine:
 - a) the prevalence of vehicles with roadworthiness defects in the UK vehicle population;
 - b) the prevalence of vehicles with roadworthiness defects in the UK vehicle crash population;
 - c) the frequency and nature of crashes caused by vehicle defects in the UK;
 - d) the contribution of MOT assessed vehicle defects to crash causation in UK; and
 - e) the contribution of MOT assessed vehicle defects to casualty injury outcome in UK
- 2. Using data generated in (1) consider the likely impacts (if any) to road safety from changes to the MOT test frequency by vehicle age and time since last inspection. The test frequency scenarios considered were a first test at year 3, second at year 5 and annual thereafter i.e. 3,2,1,1; a first test at year 4 and annual thereafter i.e. 4,1,1,1; a 4,2,1,1 strategy and a 4,2,2,2.
- 3. Consider the likely impacts (if any) to road safety from changes to the MOT test frequency to retest on the basis of miles travelled since last inspection, rather than time or combination thereof.

In the UK in 2009 over 35 million (35,468,419) MOT tests were undertaken, the majority of these were for class 4 vehicles, mainly comprising passenger cars and light goods vehicles (33,535,019). Approximately 40 % of vehicles in the UK failed their initial (Normal) MOT tests, although this varied depending on vehicle class, vehicle age and mileage at the time of the test.

Accidents are infrequent events and those in which vehicle defects were a causation factor even more infrequent. In general, the sensitivity of accident databases to causation factors, especially vehicle based, is low. Whilst most databases feature some level of information about defects in a vehicle at the time of a crash, a full (destructive) inspection is required in order to determine actual roadworthiness. To date, in-depth databases have not been focussed on supporting full scale investigations into roadworthiness investigations. The study has concluded that:

- There is uncertainty with respect to the number of accidents which occur in the UK where vehicle defects are contributory. This is because no recent studies have been specifically undertaken to investigate these issues.
- This study has estimated that vehicle defects are likely to be a contributory factor in perhaps 3% of accidents in Great Britain.
- On average in 2009, approximately 40% of vehicles tested failed their initial (Normal) MOT test. In general,
 - as vehicles age, the rate of MOT failure increases, for cars this reaches nearly 60% when they are 13 years old; and
 - the greater the cumulative distance travelled, the higher the rate of MOT failure, for example all cars which had driven over 90,000 miles experienced above a 50% failure rate.
- There is no established link between MOT measured roadworthiness and vehicle
 defects contributing to accidents, other than the common sense approach, where
 the greater the number of defects, especially the most safety critical ones in the
 fleet at a given time, the greater the likelihood of accidents being caused, at least
 in part, by roadworthiness issues.
- This study investigated the effect on road safety (if any) associated with a change to MOT testing frequency and found that the greater the distance between inspection dates, the greater the likelihood of adverse road safety consequences. Two different theoretical models were developed and used to provide an estimate of the magnitude of the number of accidents and casualties which may occur annually due to less frequent MOT testing.
 - The first model consisted of a prediction based on a hypothetical relationship between MOT defects in the fleet and casualties. The 4,2,2,2 option yielded the largest predicted increases, with an additional 1,200-2,200 accidents per year, 16-30 fatalities and 180-330 serious casualties, based on 2009 road injury statistics.
 - The second model was based on a prediction based on a comparison with the German roadworthiness testing experience. For change to a bi-annual inspection regime it was estimated that there would be a 1.65 % increase in the number of accidents and casualties which equates to an additional 37 people killed and 407 seriously injured.
- Although both approaches are not ideal, largely due to a lack of data upon which
 assumptions have been based, they consistently indicated an increase in
 accidents and casualties. However, it must be stressed that these are
 estimates only and further work would be required before a genuine
 quantification of the scale of these adverse road safety impacts will be
 known.
- It was not possible to quantify the nature of the likely impacts (if any) to road safety from changes to the MOT test frequency, with a transition to retest on the basis of miles travelled since last inspection, rather than time or combination thereof. Although, on the data reviewed to date we believe the vehicle age is more important than miles travelled, partly because these two factors are related and partly because new vehicles which travel large distances are still likely to follow manufacturers' maintenance schedules and have regular service checks.
- Reducing the frequency of testing for newer vehicles is likely to have adverse road safety consequences, but these would be substantially greater for older vehicles as the data presented in this report already indicates their high MOT failure rates.

1 Introduction

All vehicles deteriorate in service and this can have an adverse impact upon safety and the environment. National and European legislation requires motorists to maintain their vehicles in a roadworthy condition, but not all do so. Roadworthiness testing exists to ensure that at least a minimum level of benefits in a vehicles original design and manufacture are retained in service. A roadworthy vehicle may be defined as one in which there are no safety and/or emission related defects that would prevent the vehicle passing the periodic motor vehicle inspection scheme in its country of use. Mandatory inspections provide an immediate benefit, which then decreases over time, but do have an associated cost for motorists. It is important therefore, to ensure that the right balance is struck between road and vehicle safety and environmental standards on the one hand and the burden of legislation on the other.

In Britain MOT tests are undertaken to check that vehicles are kept in a roadworthy condition, with the first test required for passenger cars when they are three years old and every year thereafter. The MOT certificate confirms that at the time of the test, without dismantling it, the vehicle under test meets the minimum acceptable environmental and road safety standards required by law. However, it doesn't mean that the vehicle is roadworthy for the length of time the certificate is valid. The MOT certificate is also no guarantee of the general mechanical condition of the vehicle and doesn't cover the mechanical condition of the engine, clutch or gearbox.

European Union legislation requires a first roadworthiness test for cars no later than four years after first registration and no less frequently than once every two years thereafter. For more than 40 years, cars in Britain have been tested three years after first registration and annually thereafter.

There have been considerable technological advances in vehicle safety, emissions and reliability since that period, which means that many manufacturers now issue warranties with new vehicles that are longer than three years. Many other countries, including France, Germany, Netherlands and Sweden, conduct checks at less stringent frequencies than Britain.

Figure 1-1 provides an overview of how MOT testing reduces the burden and costs directly related to poor vehicle roadworthiness, in terms of safety and environmental benefits. This diagram was adapted from a flow chart within the AUTOFORE project (AUTOFORE 2007b).

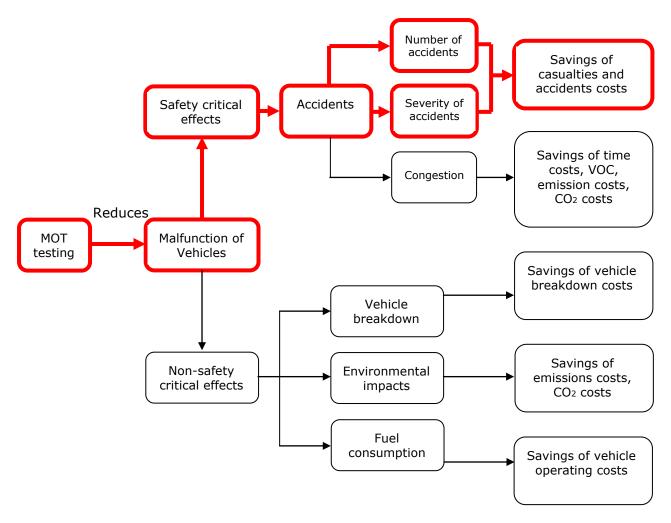


Figure 1-1: Overview of how MOT testing potentially reduces adverse affects of poor vehicle roadworthiness

The scope of this study is limited to a high level evaluation with respect to the road safety impacts only, which may be correlated with a reduction in the current frequency of MOT testing or changes away from annual inspections to ones based on cumulative mileage.

A substantial amount of data was reviewed as part of this project and where practicable this has been summarised within the main report and the data included in an Appendix.

2 Objectives

The objectives of this project were to:

- 1. With a focus on passenger cars, light vans (up to 3.5 tonnes) and motor cycles determine:
 - a) the prevalence of vehicles with roadworthiness defects in the UK vehicle population;
 - b) the prevalence of vehicles with roadworthiness defects in the UK vehicle crash population;
 - c) the frequency and nature of crashes caused by vehicle defects in the UK;
 - d) the contribution of MOT assessed vehicle defects to crash causation in UK; and
 - e) the contribution of MOT assessed vehicle defects to casualty injury outcome in UK.
- 2. Using data generated in (1) consider the likely impacts (if any) to road safety from changes to the MOT test frequency by vehicle age and time since last inspection. The test frequency scenarios considered were a first test at year 3, second at year 5 and annual thereafter i.e. 3,2,1,1; a first test at year 4 and annual thereafter i.e. 4,1,1,1; a 4,2,1,1 strategy and a 4,2,2,2.
- 3. Consider the likely impacts (if any) to road safety from changes to the MOT test frequency to retest on the basis of miles travelled since last inspection, rather than time or combination thereof.

The methodology used to meet these objectives is set out in Section 4 (Approach).

3 Background

3.1 European legislation

The current basis of European legislation for Periodic Technical Inspection (PTI) for motor vehicles and their trailers is Directive 2009/40/EC which has recently been amended by Directive 2010/48/EU (5th July 2010) and EC recommendation 2010/378/EU (5th July 2010). Directive 2009/40/EC came into force on 26^{th} June 2009 and is a recast of Directive 96/96/EC with some additions. It sets minimum inspection standards for:

- Vehicle identification
- Braking equipment
- Steering
- Visibility
- Lamps, reflectors and electrical equipment
- Axles, wheels, tyres and suspension
- · Chassis and chassis attachments
- Other equipments such as seat belts and fire extinguishers (if fitted)
- Nuisance (noise and exhaust emissions)

It allows member states the following derogations to increase the stringency of the testing regime:

- Bring forward date for first compulsory roadworthiness test
- Shorten interval between compulsory tests
- Make testing of optional equipment compulsory
- Increase number of items tested
- Extend periodic test requirement to other categories of vehicles
- Prescribe additional tests
- Require for vehicles registered on their territory higher minimum standards for braking efficiency than those prescribed

The categories of vehicles subject to roadworthiness tests and the frequency of the tests is shown in Table 3-1.

Table 3-1: Directive 2009/40/EC minimum requirements categories of vehicles subject to roadworthiness tests and the frequency of the tests.

Categories of vehicle	Frequency of tests
1. Motor vehicles used for the carriage of passengers and with more than eight seats, excluding the driver's seat	One year after the date on which the vehicle was first used, and thereafter annually
2. Motor vehicles used for the carriage of goods and having a maximum permissible mass exceeding 3500 kg	One year after the date on which the vehicle was first used, and thereafter annually
3. Trailers and semi-trailers with a maximum permissible mass exceeding 3500 kg	One year after the date on which the vehicle was first used, and thereafter annually
4. Taxis, ambulances	One year after the date on which the vehicle was first used, and thereafter annually
5. Motor vehicles having at least four wheels, normally used for the road carriage of goods and with a maximum permissible mass not exceeding 3500 kg, excluding agricultural tractors and machinery	Four years after the date on which the vehicle was first used, and thereafter every two years
6. Motor vehicles having at least four wheels, used for the carriage of passengers and with not more than eight seats excluding the driver's seat	Four years after the date on which the vehicle was first used, and thereafter every two years

The frequency of tests for European member states in 2006 is shown in Appendix A (AUTOFORE 2007a). It can be seen that many member states have a test frequency higher than that demanded by the Directive.

On 5^{th} July 2010 Directive 2009/40/EC was amended (adapted for technical progress) by Directive 2010/48/EU and EC recommendation 2010/378/EU.

Directive 2010/48/EU

This Directive updated the technical content of Directive 2009/40/EC to reflect the current state of vehicle technology and to facilitate further harmonisation of the inspection process amongst member states. The changes included:

- Requirements for information to be included on a roadworthiness certificate.
- Introduction of vehicle categories definitions according to Directive 2007/46/EC.
- Elaboration of inspection items in Annex II including addition of inspection methods and reasons for failures for all inspection items.
- Some Member States, e.g. the UK, have extended the PTI requirement to other categories of vehicles, e.g. L category vehicles, as permitted by the derogations noted above. Inspection methods and minimum mandatory reasons for failure for these categories of vehicles have been added.
- Introduction of a basic inspection for several electronic controlled systems: EBS, safety belt load limiters and pre-tensioners, airbags, SRS, ESC and OBD systems under certain conditions for gaseous emissions for petrol engines.

Member states must comply with Directive 2010/48/EU by 31^{st} Dec 2011 with the exception of the roadworthiness certificate requirement for which the date is 31^{st} Dec 2013.

Recommendation 2010/378/EU

This Recommendation has the objective to further harmonize the inspection process among Member States. It provides best practice guidelines that inspectors should be

encouraged to use to assess deficiencies detected during PTIs. Defects should be categorized into three groups:

Minor defects

- No significant effect on the safety of the vehicle.
- Re-examination is not necessarily required.

Major defects

- May prejudice the safety of the vehicle or put road users at risk or that are more significant non-compliances.
- The use of the vehicle is subject to restrictions until it has passed a reexamination.

Dangerous defects

- Immediate risk to road safety.
- The vehicle should not be used any more on the road under any circumstances.
- If the vehicle can be repaired re-examination is required.

3.2 MOT information

Sections 45 to 48 of the Road Traffic Act 1988 provide the legislative basis for MOT testing. The purpose of the MOT test is to ensure that cars, other light vehicles (including some light goods vehicles), private buses and motor bicycles over a prescribed age are checked at least once a year to see that they comply with key roadworthiness and environmental requirements in the Road Vehicle Construction and Use Regulations 1986 and the Road Vehicle Lighting Regulations 1989 as amended. A Test Certificate is issued following successful completion of an examination.

The Test Certificate relates only to the condition of testable items at the time of the test and should not be regarded as evidence:

- of their condition at any other time;
- of the general mechanical condition of the vehicle; or
- that the vehicle fully complies with all aspects of the law on vehicle construction and use.

The test precludes the dismantling of parts of the vehicle although doors, boot lids and other means of access will normally need to be opened. In the case of motor bicycles, cover panels may also need to be removed or raised to examine the vehicle structure.

Detailed legislation on vehicles exempt from the MOT is set out in the Motor Vehicles Test Regulations 1981 regulation 6 (as amended), and in the Road Traffic Act 1988 Section 189. Examples of vehicles exempted from MOT testing include electrically propelled goods vehicles, track laying vehicles, vehicles constructed or adapted to form part of an articulated combination, works trucks, trailers, pedestrian controlled mechanically propelled vehicles and electrically powered pedal cycles. Legislation also exempts vehicles used in particular ways (e.g. travelling to and from test) or particular places (e.g. some islands) from the need to have a valid MOT test certificate. It should also be noted that even when a vehicle is not required to have a test certificate it must still be maintained in a roadworthy condition.

The MOT test is conducted principally at private garages and by some local authorities. These are authorised, or designated as appropriate, by the Vehicle and Operator Services Agency (VOSA), and known as Vehicle Testing Stations (VTS). VTS and their staff are subject to inspections by VOSA to ensure that testing is properly carried out using approved test equipment. Only specifically approved people may conduct tests, sign official test documents, and make database entries. VTS may only test those

classes and types of vehicle that they are authorised to test and which are of a size and weight that can be accommodated on the authorised test equipment.

There are different classifications of vehicles on the UK's roads which are subject to different MOT tests and frequency.

Table 3-2: The vehicles subject to test under the Regulations divided into their classes (Source: MOT Testing Data User Guide)

Class	Description	Age
1	Motor bicycles (with or without sidecars) up to 200 cm ³	3
2	All motor bicycles (including Class 1) (with or without sidecars).	3
3	3 wheeled vehicles not more than 450 kg unladen weight (excluding	3
	motor bicycles with side cars). (3 wheeled vehicles more than 450 kg	
	unladen are in class 4.)	
4	Cars, passenger vehicles, motor caravans, Private Hire Vehicles, Motor	3
	Tricycles, Quadricycles and dual purpose vehicles in all cases with up to	
	eight passenger seats	
	Goods vehicles not exceeding 3,000 kg Design Gross Weight (DGW).	3
	Taxis and ambulances in either case with up to eight passenger seats.	1
	Passenger vehicles, ambulances, motor caravans and dual purpose	1
	vehicles in all cases with nine to twelve passenger seats that;	
	are fitted with no more seat belts than the minimum required	
	because of their construction; or	
	 are identified as having been fitted with a type approved seat 	
	belt installation when built; or	
	 have been tested as class 4A, 5A or 6A (PSV) with at least the 	
	same number of seat belts as are currently fitted.	
4A	The class 4A test is the normal class 4 test with the addition of a	1
	check on the installation of certain seat belts. Passenger vehicles,	
	ambulances, motor caravans and dual purpose vehicles in all cases with	
	nine to twelve passenger seats that:	
	 are fitted with more seat belts than the minimum required 	
	because of their construction and:	
	 are not identified as having been fitted with a type approved 	
	seat belt installation when built; or	
	 have not been tested as class 4A, 5A or 6A (PSV) with at least 	
	the same number of seat belts as are currently fitted.	
5	Private passenger vehicles, ambulances, motor caravans and dual	1
	purpose vehicles in all cases with thirteen or more passenger seats	
	(including community and play buses, etc.) that:	
	 are fitted with no more seat belts than the minimum required 	
	because of their construction; or	
	 are identified as having been fitted with a type approved seat 	
	belt installation to all seats when built; or	
	 have been tested as class 5A or class 6A (PSV) with at least the 	
	same number of seat belts as are currently fitted.	
5A	The class 5A test is the normal class 5 test with the addition of a	1
	check on the installation of certain seat belts. Passenger vehicles,	
	ambulances, motor caravans and dual purpose vehicles in all cases with	
	thirteen or more passenger seats (including community buses, etc.)	
	that:	
	are fitted with more seat belts than the minimum required	
	because of their construction and:	
	 are not identified as having been fitted with a type approved 	
	seat belt installation when built; or	
	 have not been tested as class 5A or class 6A (PSV) with at least 	
	the same number of seat belts as are currently fitted.	
7	Goods Vehicles over 3,000 kg up to and including 3,500 kg DGW	3

3.2.1 MOT Database Scheme

Figure 3-1 provides an overview of the data groups and their respective relationship with each other.

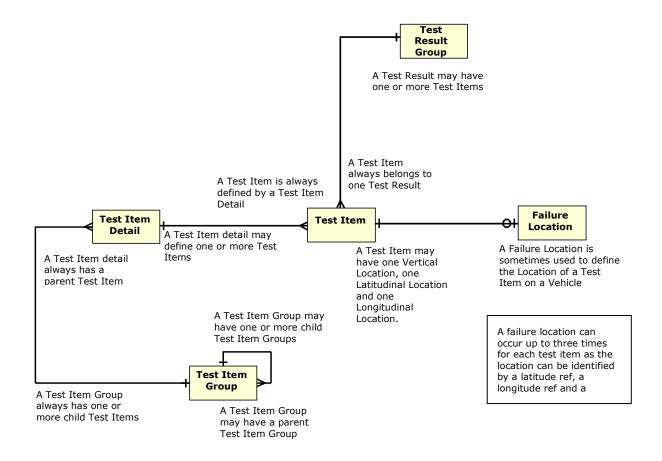


Figure 3-1: Entity relationship diagram for MOT database scheme (Source: MOT Testing Data User Guide)

The data is comprised of two main groups, each divided into calendar years.

- Test Result Group, with:
 - o information about the time, place and final outcome of the MOT test; and
 - o information about the vehicle tested.
- Test Item Group, which contains information about individual RfRs (Reasons for Rejection) discovered during the test.

The three remaining datasets contain further information about individual RfRs, and their characteristics.

At the time of writing, MOT test data was available from $1^{\rm st}$ January 2005 to $31^{\rm st}$ March 2010 inclusively. The MOT testing data release contains approximately 150 million tests, with 250 million associated test item records. However, MOT computerisation was not fully implemented across Great Britain until $1^{\rm st}$ April 2006, therefore the dataset is only complete from this date onwards.

Data from MOT tests in Great Britain from 2008 and 2009 were selected. The data encompasses all tests for which a valid MOT pass could have been a potential outcome and was analysed as part of this project (Section 5.1) to assess the prevalence of vehicle roadworthiness defects.

3.3 Accident data information

Accidents are infrequent events and those attributable to vehicle defects even more infrequent. In general the sensitivity of accident databases to causation factors, especially vehicle based, is low. Whilst most databases feature some level of information about defects in a vehicle at the time of a crash, a full (destructive) inspection is required in order to determine actual roadworthiness. To date, in-depth databases have not been focussed on supporting full scale investigations into roadworthiness investigations.

Section 5.2 investigates the prevalence of vehicles with roadworthiness defects in Great Britain in the road accident population using the accident database described below.

3.3.1 Reported road casualties in Great Britain (STATS19)

STATS19 is the national database in which reported traffic accidents that result in injury to at least one person are recorded, although it is acknowledged that a not all injury accidents are reported to police and recorded in the database. The database primarily records information on where the accident took place, when the accident occurred, the conditions at the time and location of the accident, details of the vehicles involved, and information about the casualties. Approximately 50 pieces of information are collected for each accident (Department for Transport 2007).

The severity of the casualties involved in the accident is assessed by the investigating police officer. Each casualty is recorded as being either slightly, seriously, or fatally injured. Fatal injury includes only casualties who died less than 30 days after the accident, not including suicides or death from natural causes. Serious injury includes casualties who were admitted to hospital as an in-patient. Slight injury includes minor cuts, bruises, and whiplash. The full definitions of these injury severities (and all other information recorded in STATS19) are given in the STATS20 document which accompanies the STATS19 form. These definitions are also available online at www.stats19.org.uk.

Between 1999 and 2004 a system of recording contributory factors was trialled in 15 Police forces around the country. This led to the national adoption of a contributory factor system in 2005. Using this system, the investigating police officer can record up to 6 factors which contributed towards the accident.

The accidents that are recorded in STATS19, including the contributory factors, are summarised annually in the Department for Transport "Road Casualties Great Britain" series (Department for Transport 2007) (now "Reported Road Casualties Great Britain").

3.3.2 VOSA accident database

The Vehicle and Operator Services Agency (VOSA) is an executive agency of the Department for Transport (DfT), with responsibility for monitoring and enforcement of vehicle roadworthiness. Part of VOSA's remit is to respond to police requests for inspections of vehicles following road traffic accidents, for purposes of public and other enquiries. The principal requirements of an examination are to:

- establish whether the mechanical condition of the vehicle caused or contributed to the accident;
- verify any allegations by the driver that the vehicle was faulty; and
- confirm that no mechanical defects or design faults were present prior to the accident in cases where charges for other offences are being laid against the driver.

Historically, VOSA inspections concentrated on goods vehicles over 3.5t (HGVs), passenger vehicles (PSVs) and a few other miscellaneous vehicle types. Many police

forces have their own vehicle examiners for cars and motorcycles, and some also carry out their own inspections of larger vehicles, while others rely totally on VOSA for all examinations, regardless of vehicle type. Police forces also request VOSA to undertake examinations where there are political implications, especially for accidents which attract significant media attention.

Vehicle examinations on large vehicles usually take place at a commercial operator's premises, to which the accident-involved vehicle will have been towed under police instruction. However, in certain circumstances a preliminary examination may be carried out at the accident scene before the vehicle is towed away for the full inspection.

The data collected by VOSA examiners provides some information about the UK vehicle fleet condition, the occurrence of vehicle defects and the contribution of these defects to accidents. VOSA and the DfT aim to use the information gleaned during vehicle examinations to inform their policy decisions on road safety and accident reduction at a National level. This requirement is fulfilled by the VOSA Accident Database, a data resource that can be used for policy research in the field of vehicle and operator safety.

3.3.3 Fatals Intermediate Database

The Fatals Intermediate Database was developed by TRL under contract to the DfT. Fatal accident files acquired from nearly all police forces in England and Wales were examined, and information extracted for entry into the database. Although data are no longer being added to the database, it still contains details of 11,996 fatal accidents (18,379 vehicles, 17,612 of which are not pedal cycles). The accidents in the database cover the period 1986-98, though over 90% date from 1990-95.

3.3.4 On The Spot database

The On The Spot (OTS) accident data collection project was an in-depth accident research project which ran from 2000 to 2010, and was co-funded by the Department for Transport and the Highways Agency. The aim of the project was to collect detailed information regarding the causes and consequences of road traffic accidents, which could be used to assess and assist in the development of new accident countermeasures systems, be they, vehicle, road or behavioural. The project achieved this aim by sending teams of experienced investigators to the scenes of road traffic accidents at the same time as the emergency services, to collect detailed information regarding the vehicles, highways and behavioural aspects which could have influenced the accidents. The study collected this detailed data for all accidents irrespective of their accident severity. All of the data collected by the study is stored in a relational database, which enables detailed analysis of the causes and consequences of accidents to be undertaken.

In total the two OTS teams, based in the Thames Valley and Nottingham investigated 4,744 accidents; these investigations were undertaken within two geographically defined sample regions, following a strict sampling regime which ensured the distribution of accidents attended were representative of the national distribution of accidents as reported to the police.

OTS investigations were predominately undertaken at the scene of the accident, occasionally supplemented by inspections of the vehicles involved at recovery yards. These investigations were independent of the police, and were undertaken using observation methods to ensure that the OTS investigations did not hinder or interfere with any criminal investigation. The OTS investigators did not have any legal powers to seize a vehicle or undertake a mechanical inspection.

The information held within the database relating to vehicle defects, is therefore based in the most part on the observations of the OTS investigators at that the scene and thus any conclusion drawn from the following analysis must be taken within this context.

4 Approach

The evidence generated in this project is used to consider the likely impact of changing the frequency of the MOT test for passenger cars, light vans and motorcycles (but NOT minibuses, HGV's or buses) in the UK.

4.1 Objective 1: Prevalence and nature of vehicle defects

• An analysis of the **MOT scheme database** to determine the prevalence of vehicles with roadworthiness defects in the GB vehicle population. Test years 2008 and 2009 were analysed as part of this research programme.

The study investigated the prevalence of vehicle defects which contribute to MOT failures, including those with affect the roadworthiness (potential to contribute to an accident) and crashworthiness (potential to exacerbate injuries should a collision occur) vehicles.

 An analysis of the available accident databases to determine the prevalence of vehicles with roadworthiness defects in the UK vehicle crash population, including an assessment of the frequency and nature of crashes caused by vehicle defects.

The contribution of MOT assessed vehicle defects to crash causation in GB and the associated causalities.

To achieve these goals, the following sources of data have been analysed:

- STATS19
- VOSA Accident Database
- Fatals Intermediate Database
- On The Spot Database

The findings from the analysis for objective 1 are summarised in Section 5.

4.2 Objectives 2 and 3: Likely impacts to road safety (if any) to changes to MOT periodical inspections

• The influence of time (vehicle age and time since last inspection) and distance travelled between inspections on vehicle pass rate is considered.

Objectives 2 and 3 are explored by a 'reasoned judgment' approach, including discussions with respect to the lack of certainty. The findings from Objective 1 are used where practicable to inform the evaluation of the likely impacts to road safety associated with any changes to MOT testing frequency.

Two different methods are used to estimate the potential impact on British road casualties which could be associated with changes to the MOT test frequency:

- Prediction based on a hypothetical relationship between MOT defects in the fleet and casualties; and a
- Prediction based on a comparison of the German roadworthiness testing experience.
- Finally, some comments are provided with respect to the likely impacts (if any) to road safety from changes to the MOT test frequency, with a transition to retest on the basis of miles travelled since last inspection, rather than time or combination thereof.

The findings from the analysis for objectives two and three are summarised in Section 6.

5 Prevalence and nature of vehicle defects

5.1 The prevalence of vehicles with roadworthiness defects in the UK vehicle population

Table 5-1 highlights the potential outcome for each MOT test undertaken in Great Britain and the associated descriptions. In total, there were over 34 million MOT tests conducted in 2008 and over 35 million in 2009 (Table 5-2 and Table 5-3 respectively). Tests which were abandoned (ABA), aborted (ABR) or where the Nominated Tester (NT) refused to examine the vehicle (R) are all grouped as 'Other' as they represent less than 1% of all MOT tests.

Table 5-1: MOT test results

MOT test results	Code	Description
Pass	Р	Test pass.
Fail	F	Test fail.
Pass with Rectification at Station	PRS	The process where minor defects may be rectified within one hour after the test, but before recording the result on the Vehicle Testing Station (VTS) device (as defined in MOT Testing Guide).
Abandon	АВА	The term used when a test cannot be completed because the Nominated Tester (NT) considers it unsafe to continue or because it becomes apparent during the test that certain items cannot be satisfactorily inspected. An appropriate fee may be charged for the test.
Abort	ABR	The term used when a test cannot be completed because of a problem with the testing equipment or the NT. No fee may be charged for the test.
Refusal to Test	R	An NT may refuse to test a vehicle for a number of specified reasons. If the presenter insists on documentation to show the Refusal then a test record will be created on the system.

Table 5-2: All MOT test (initial and retests) results by vehicle class (2008)

Vehicle Class		Total			
	Pass	PRS	Fail	Other	
1	206,628	19,187	48,592	1,868	276,275
	74.8%	6.9%	17.6%	0.7%	100.0%
2	635,632	49,028	75,083	4,419	764,162
	83.2%	6.4%	9.8%	0.6%	100.0%
3	11,592	950	2,913	257	15,712
	73.8%	6.0%	18.5%	1.6%	100.0%
4	22,290,739	2,473,227	7,595,635	24,0291	32,599,892
	68.4%	7.6%	23.3%	0.7%	100.0%
5	45,027	2,968	14,441	986	63,422
	71.0%	4.7%	22.8%	1.6%	100.0%
7	477,179	42,495	224,473	7,863	752,010
	63.5%	5.7%	29.8%	1.0%	100.0%
Total	23,666,797	2,587,855	7,961,137	255,684	34,471,473
iotai	68.7%	7.5%	23.1%	0.7%	100.0%

Table 5-3: All MOT test (initial and retests) results by vehicle class (2009)

Vehicle Class		Total			
	Pass	PRS	Fail	Other	
1	210,663	21,826	49,471	1,960	283,920
	74.2%	7.7%	17.4%	0.7%	100.0%
2	650,609	55,363	78,844	4,511	789,327
	82.4%	7.0%	10.0%	0.6%	100.0%
3	11,204	942	2,760	271	15,177
<u> </u>	73.8%	6.2%	18.2%	1.8%	100.0%
4	22,734,458	2,517,808	8,029,712	253,041	33,535,019
4	67.8%	7.5%	23.9%	0.8%	100.0%
5	45,475	3,282	14,263	950	63,970
	71.1%	5.1%	22.3%	1.5%	100.0%
7	491,383	47,767	233,705	8,151	781,006
,	62.9%	6.1%	29.9%	1.0%	100.0%
Total	24,143,792	2,646,988	8,408,755	2,68,884	35,468,419
Total	68.1%	7.5%	23.7%	0.8%	100.0%

The distribution of all the test result outcomes for the different classes of vehicles is very similar for 2008 and 2009. Approximately 95% of all MOT tests conducted were for MOT class 4 vehicles, of which the majority were passenger cars.

Table 5-2 and Table 5-3 summarise the results for all the tests undertaken, **where some vehicles will be counted more than once.** This is mainly because some vehicles do not pass their initial test and are subsequently retested. Other reasons for a vehicle being tested more than once in a calendar year could include a vehicle being sold and the seller wishing to increase its value by offering the new purchaser a full (12 month) MOT certificate.

In order to prevent identification of individual vehicles or Vehicle Testing Stations, the MOT Scheme Database only holds anonymous data. Therefore, a consequence is that it is not possible to aggregate the data to identify an individual vehicle and to then further investigate how many vehicles had multiple MOT tests. It is not known how many vehicles initially failed a test, but then on the subsequent attempt passed or indeed how many never passed, or how many passed more than once at the first attempt in a given calendar year. It is however possible to make estimates of some of these potential scenarios.

The type of MOT test is differentiated in the MOT Scheme Database, as either a Normal (initial) test or a retest, where the retests have four different classifications (Table 5-4). There are a minority of vehicles, for which the Vehicle Testing Station (VTS) refused to test and the customer requested documentation.

There were 27,095,560 and 27,648,893 Normal tests in 2008 and 2009 respectively (Table 5-5 and Table 5-6). The distribution of the type of tests undertaken and their outcomes (results) is very similar for 2008 and 2009.

In 2009, Normal MOT tests accounted for approximately 78% of all MOT tests. In round numbers, 8.4 million vehicles failed their initial MOT test, whilst 7.8 million retests were undertaken in the same calendar year. Full retests (F) and Partial retests for minor items (PM) were very rare, collectively representing about 1% of all tests; whereas Partial retests where the vehicle was either repaired at the VRS (PR) or elsewhere (PL) represented 21% of all MOT tests.

Table 5-4: Type of MOT test

Type of MOT test	Code	Description
Normal MOT test	N	Full initial test.
Full retest	F	Full retest of vehicle. Derived by system, not selected by the (NT).
Partial retest (minor items)	РМ	Free partial MOT retest when vehicle has left VTS for repair of minor items only, and returned by close of next working day.
Partial retest (repaired at VTS)	PR	Free partial MOT retest where vehicle has remained at VTS for repair.
Partial retest left VTS	PL	Chargeable (half standard fee) partial MOT retest when vehicle has left VTS for repair.
Refusal to test	RF	Refusal to test – customer requested documentation.

Table 5-5: All MOT test (initial and retests) results by Test Type (2008)

Toot Type		Total			
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	16,380,929	2,575,782	7,910,841	228,008	27,095,560
Normal MOT Test (N)	60.5%	9.5%	29.2%	0.8%	100.0%
Full rotost (E)	258,321	6,463	23,713	17,884	306,381
Full retest (F)	84.3%	2.1%	7.7%	5.8%	100.00%
Partial retest (minor	145,216	30	22	102	145,370
items) (PM)	99.9%	0.0%	0.0%	0.1%	100.0%
Partial retest repaired at	3,804,226	1,593	3,528	3,061	3,812,408
VRS (PR)	99.8%	0.0%	0.1%	0.1%	100.0%
Partial Retest left VTS	3,078,105	3,987	23,033	6,238	3,111,363
(PL)	98.9%	0.1%	0.7%	0.2%	100.0%
Defugal to test (DE)	0	0	0	391	391
Refusal to test (RF)	0.0%	0.0%	0.0%	100.0%	100.0%
Total	23,666,797	2,587,855	7,961,137	255,684	34,471,473
IULai	68.7%	7.5%	23.1%	0.7%	100.0%

Table 5-6: All MOT test (initial and retests) results by Test Type (2009)

Toot Type		Total			
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	16,414,220	2,635,048	8,360,893	238,732	27,648,893
Normal Mor Test (N)	59.4%	9.5%	30.2%	0.9%	100.0%
Full retest (F)	218,258	6,229	22,179	18,794	265,460
ruii retest (r)	82.2%	2.3%	8.4%	7.1%	100.0%
Partial retest (minor	133,923	21	21	74	134,039
items) (PM)	99.9%	.0%	.0%	0.1%	100.0%
Partial retest repaired at	4,044,252	1,486	3,339	3,489	4,052,566
VRS (PR)	99.8%	.0%	.1%	0.1%	100.0%
Partial Retest left VTS	3,333,139	4,204	22,323	7,355	3,367,021
(PL)	99.0%	.1%	.7%	0.2%	100.0%
Refusal to test (RF)	0	0	0	440	440
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	24,143,792	2,646,988	8,408,755	268,884	35,468,419
iotai	68.1	7.5	23.7	0.8	100

5.1.1 MOT failure rates by vehicle class, age and mileage

VOSA has historically published MOT testing volumes and failure rates as part of their annual Effectiveness Report. These reports only include data from 'Normal' (initial) tests with outcomes of 'Pass', 'PRS' or 'Fail', all other tests are omitted.

VOSA calculate failure rates as follows:

5

7

Total

Initial failure rate = (Test Fail Results + Test PRS Results) / Total Tests

Final failure rate = Test Fail Results / Total Tests

34.7

49.1

39.0

Where, Total tests = Test Pass Results + Test PRS Results + Test Fail Results

Table 5-7 compares the initial and final failure rates by vehicle class, with class 2 (motor bicycles \geq 200cc) having the lowest initial and final failure rates; and class 7 (Goods Vehicles over 3,000 kg up to and including 3,500 kg DGW) experiencing the highest initial failure rates of about 50%.

Vehicle	20	08	2009			
Class	Initial	Final	Initial	Final		
1	28.8	20.6	29.5	20.5		
2	17.8	10.8	18.7	11.0		
3 29.8		22.5	29.7	22.2		
4	39.5	29.8	40.6	30.9		

28.8

41.2

29.4

34.7

50.0

40.1

28.1

41.5

30.5

Table 5-7: Summary of Initial and Final failure rates by Vehicle Class

Whilst Table 5-7 provides the average Initial and Final failure rates for each class of vehicle, Figure 5-1 and Figure 5-2 highlight how both the failure rate measures change with respect to the age of the vehicle at the time of the test. For example, class 4 vehicles which were 3 years old at the time of their test (2006) in 2009, started with an initial failure rate of 21%, but by the time they were 13 years old (1996), this had increased to 56%.

The same overall pattern is seen for Initial and Final rates with respect to age, with classes 4 and 7 vehicles experiencing higher failure rates as they age, and motorcycles (classes 1 and 2) maintaining a more level performance over time. Interestingly there is some evidence that the lower engine capacity motorcycles (50cc) behave more like class 4 and 7 vehicles.

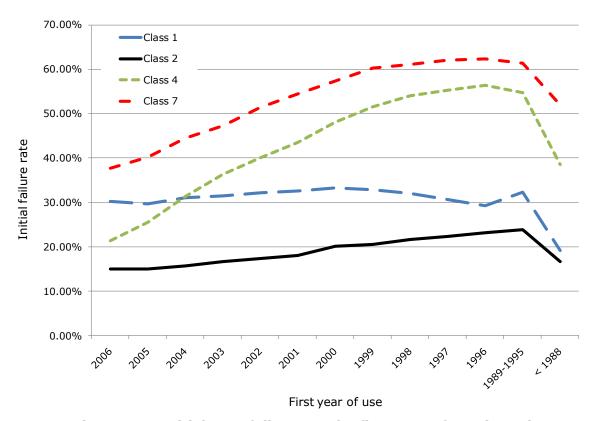


Figure 5-1: Initial MOT failure rate by first year of use (2009)

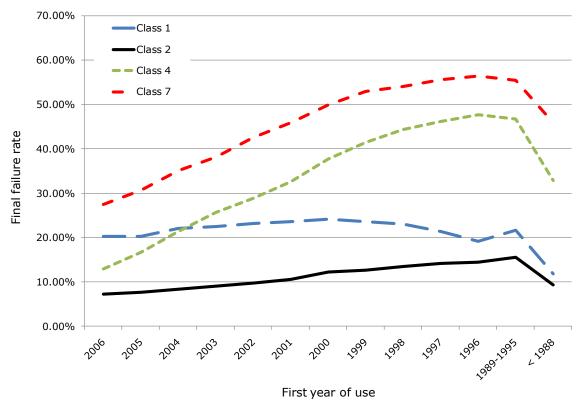


Figure 5-2: Final MOT failure rate by first year of use (2009)

Vehicle mileage was not found to be strongly related to motorcycle MOT failure rates and their overall mileages were significantly less than those observed for class 4 and 7 vehicles. Figure 5-3 highlights the rate of increase for Initial and Final MOT failure rates as the vehicles cumulative mileage increases.

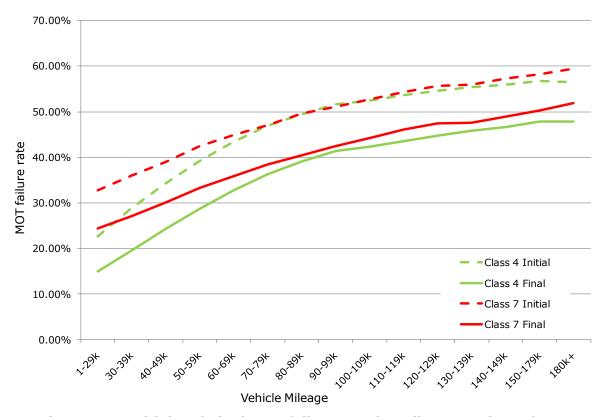


Figure 5-3: Initial and Final MOT failure rate by mileage at time of test

Figure 5-4 and Figure 5-5 compare the initial and final MOT failure rates for Class 4 vehicles by their mileage and age at the time of the test. The figures indicate that the initial and final failure rates increases more with respect to the age of the vehicle compared to the mileage. However, no in-depth statistical analysis has been undertaken to substantiate any significance associated with this observed trend.

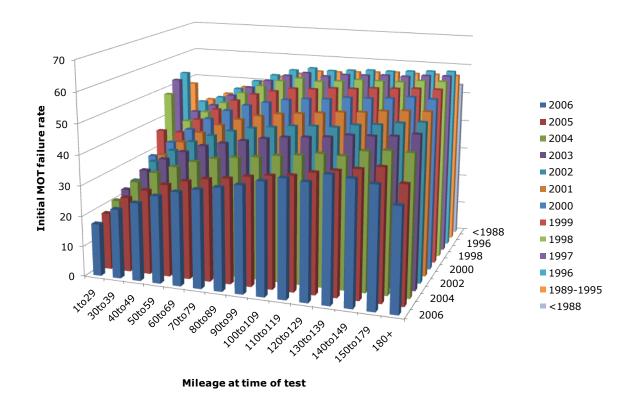


Figure 5-4: Class 4 initial MOT failure rate (percentage) by mileage and age of vehicle at time of test (2009)

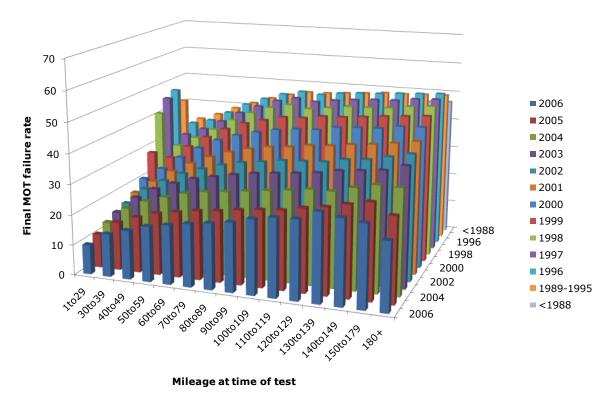


Figure 5-5: Class 4 final MOT failure rate (percentage) by mileage and age of vehicle at time of test (2009)

5.1.2 MOT test items, Reasons for Rejection

There were 8,360,893 vehicles which failed (F) their initial (Normal) MOT test in 2009, and a further 2,635,048 who passed but only with rectification at the station (PRS) (Table 5-6). For each of these vehicles the Reasons for Rejection (RfR) are reported. In addition, vehicles which pass or fail their initial MOT can be given Advisory (A) notices, which serve to warn the motorist of remedial maintenance or actions that are required soon. Appendix E (Table E-15 to Table E-18) provides a breakdown of the RfRs split by their type.

Table 5-8 compares the number of vehicles by Class by their MOT test result ('fail' or 'PRS') with the number of RfRs (excluding Advisory notices) associated with them. Vehicles of all classes with an MOT 'fail' result had a higher proportion of RfRs compared with those with a PRS result. Class 7 vehicles had the highest ratio of RfRs per vehicle, with an average 5.15 per vehicle identified as 'fail'; and 2.08 per vehicle identified as 'PRS'.

Table 5-8: Comparison of initial MOT results 'fail' and 'PRS' with number of RfR (2009)

	Initial (Normal) MOT te	est fail	Initial (Normal) MOT test PRS			
	No. Vehicles	No. RfRs	RfR per vehicle	No. vehicles	No. RfRs	RfR per vehicle	
Class 1	49,076	148,625	3.03	21,629	31,248	1.44	
Class 2	78,413	180,650	2.30	55,130	73,739	1.34	
Class 4	7,986,125	29,025,122	3.63	2,506,899	4,727,655	1.89	
Class 7	230,549	1,187,445	5.15	47,211	98,218	2.08	

It was beyond the scope of this project to undertake a comprehensive review of the available data pertaining to the test items which constituted the Reasons for Rejection. However, the individual RfRs within their system groups have been correlated with the vehicle class. Therefore the percentages given in Table 5-9 relate to RfRs (including advisory notices) and not vehicles. Table 5-10 provides the system failure percentages excluding advisory notices.

Table 5-9: Summary of Reasons for Rejection (Fail, PRS and Advisory); 2009

System Failure	Class 1	Class 2	Class 4	Class 7
Number of RfR =	285,318	533,428	56,287,125	1,910,649
Lighting & signalling	25.5%	18.5%	18.0%	20.6%
Steering	25.5%	19.1%	3.0%	3.9%
Suspension	23.370	13.170	18.9%	21.4%
Brakes	19.4%	23.9%	25.3%	27.3%
Tyres	13.3%	18.3%	14.8%	7.5%
Road wheels	13.570	10.570	0.6%	0.2%
Seat belts			1.8%	2.6%
Body & structure	2.7%	1.4%	1.8%	4.0%
Drive system	5.6%	7.0%		
Fuel & exhaust	5.3%	7.4%	7.5%	3.8%
Drivers view of the road			6.9%	7.3%
Registration plate & VIN	1.6%	3.3%		

Table 5-10: Summary of Reasons for Rejection (Fail and PRS only); 2009

System Failure	Class 1	Class 2	Class 4	Class 7
Number of RfR =	179,873	254,389	33,752,777	1,285,663
Lighting & signalling	39.0%	37.4%	28.2%	29.6%
Steering	19.9%	15.1%	2.8%	3.3%
Suspension	15.570	13.170	16.5%	15.9%
Brakes	17.2%	17.8%	19.3%	24.6%
Tyres	8.6%	10.8%	9.8%	4.5%
Road wheels	0.070	10.070	0.4%	0.2%
Seat belts			2.2%	2.9%
Body & structure	3.0%	2.2%	2.1%	4.8%
Drive system	4.1%	4.1%		
Fuel & exhaust	4.0%	4.1%	7.5%	3.9%
Drivers view of the road			9.0%	8.2%
Registration plate & VIN	2.5%	6.9%		

In addition, RfRs are categorised in the MOT Scheme Database as either minor, major or in some instances dangerous. It is recommended that future work considers the characteristics and nature of these classifications in more detail, especially their frequency with regards to vehicle age. It is interesting to note that vehicle Advisory notes were commonly awarded to brakes, tyres and suspension systems for all Classes of vehicle.

5.1.3 Summary of the findings

Examination of the MOT Scheme Database for tests performed in 2008 and 2009 showed that:

- For vehicle classes 1 to 7, the vast majority of which are class 4 (cars and light goods vehicles), on average about 40 % failed their initial (Normal) MOT test.
 - For vehicle classes 1 and 2 (motorcycles) the proportion that fail is much lower at an average of 21 % (with a higher rate for 50cc engine capacity).
 - For vehicle class 7 (light goods vehicles 3 to 3.5 tonne) the failure rate is highest at an average of 50 %.
- In general the proportion of failures increases with vehicle age and mileage although it is interesting to note that the proportion decreases for much older vehicles, i.e. those registered before 1998.
- For class 4 vehicles (cars and light goods vehicles) the most frequent test failure items (excluding advisory notes) referred to Lighting and signalling (28%) followed by brakes (19%) followed by suspension (17%) and tyres and wheels (10%). Other items were below 10%.
- For other classes of vehicles the pattern is similar with the notable exception that class 7 vehicles (light goods vehicles 3 to 3.5 tonne) tyres and wheels are a much lower proportion (5%), while brakes are higher (25%).
- The RfRs which could potentially directly affect the vehicles' crashworthiness performance, for example 'seat belts' and 'body and structure' items, were reported as follows:

- Class 4 seat belts (2.2%), body and structure (2.1%); and
- o Class 7 seat belts (2.9%), body and structure (4.8%).

Vehicle defects identified as dangerous at the time of the MOT have not been considered due to the constraints of the project. Further work is recommended to assess the frequency and nature of these vehicles. Full data is presented in Appendix B and Appendix E.

5.2 The prevalence of vehicles with roadworthiness defects in the UK vehicle crash population

The main source of statistical information about injury road accidents in Great Britain is the STATS19 database, which is populated by the police under a system that has operated since 1949. The STATS19 database contains information about the accident, the vehicles involved and the casualties. In addition, Contributory Factors are recorded wherever practicable which include descriptions of vehicle defects, but these are very likely to underestimate their frequency as it is unusual for vehicles to be fully examined by the police or VOSA following an injury accident.

In 2009, there were 2,057, 21,997 and 139,500 reported fatal, serious and slight injury accidents in Great Britain and approximately 94%, 89% and 76% of these respectively were assigned Contributory Factors. Table 5-11 and Table 5-12 are re-produced from Reported Road Casualties Great Britain 2009 and highlight that approximately 2% of all injury severity accidents and 2% of all casualties were related to vehicle defects in some way.

Table 5-11: Contributory factors: Reported accidents by severity: GB 2009

Contributory	Fatal accidents		Serious accidents		Slight accidents		All accidents	
factor reported in accident	Number	%	Number	%	Number	%	Number	%
Vehicle defects	42	2	396	2	1,932	2	2,369	2
Tyres illegal, defective or under inflated	17	1	165	1	678	1	860	1
Defective lights or indicators	2	0	28	0	152	0	182	0
Defective brakes	14	1	126	1	681	1	821	1
Defective steering or suspension	4	0	51	0	277	0	332	0
Defective or missing mirrors	0	0	2	0	11	0	13	0
Overloaded or poorly loaded vehicle or trailer	5	0	41	0	213	0	259	0
Total accidents	1,935	100	19,566	100	106,684	100	128,185	100

_

¹ Includes only accidents where a police officer attended the scene and in which a contributory factor was reported

Table 5-12: Contributory factors: Casualties in reported accidents² by severity: GB 2009

Contributory	Fatal accidents		Serious accidents		Slight accidents		All accidents	
factor reported in accident	Number	%	Number	%	Number	%	Number	%
Vehicle defects	46	2	467	2	3,045	2	3,558	2
Tyres illegal, defective or under inflated	20	1	196	1	1,168	1	1,384	1
Defective lights or indicators	2	0	31	0	207	0	240	0
Defective brakes	16	1	141	1	1,058	1	1,215	1
Defective steering or suspension	4	0	63	0	375	0	442	0
Defective or missing mirrors	0	0	2	0	17	0	19	0
Overloaded or poorly loaded vehicle or trailer	5	0	54	0	340	0	399	0
Total accidents	2,094	100	22,146	100	155,407	100	179,647	100

Illegal or defective tyres and defective brakes were the most common Contributory Factors recorded. The tables include all vehicle types, so it is not possible from these to correlate the Contributory Factors with specific vehicles of interest (Classes 1, 2, 4 and 7). Due to the nature of STATS19 only a very low confidence can be associated with these findings.

5.2.1 Review of in-depth accident databases

A full review of the evidence is presented in Appendix C. This section provides a summary of the key findings.

The relationship between accident causation and prevention is often discussed in terms of the contribution of the environment (including road), vehicles and/or humans in the accident. TRL on scene accident data collection studies in the 1970's found that the human elements dominated accident causation factors (95%). More recent work (Kirk *et al.* 2010; referenced through Cuerden *et al.*) using the UK's On The Spot (OTS) data collection project and the Contributory Factors 2005 data found the relationship highlighted in Figure 5-6. In summary:

- 96.9 % of OTS accidents have a human factor (74.4 % only a human factor) which is contributory;
- at least one environment (road) factor is present in 19.9% of OTS accidents, but only 1.1% have only road environment factors recorded; and
- vehicle factors are the least represented factor group, with 4.7% of OTS accidents having at least one very likely vehicle factor, but only 0.6% having only vehicle factors.

² Includes only accidents where a police officer attended the scene and in which a contributory factor was reported

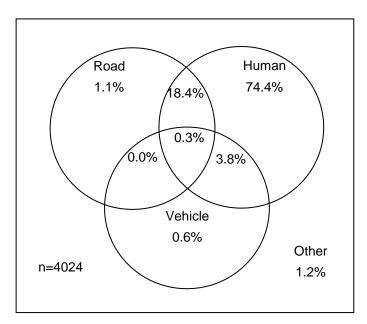


Figure 5-6: OTS Distribution of factor groupings - scene level, Contributory Factors 2005 (very likely) (Source: *Cuerden et al.* 2010)

Figure 5-6 does not differentiate between all vehicle defects and those which could be identified and corrected as part of the MOT. A further examination of OTS was undertaken to explore this further.

- For cars, light goods vehicles and motorcycles, about 2.5 % of the vehicles had a
 defect recorded that may have been detectable in an MOT prior to the collision. A
 further 1% of vehicles suffered a rapid tyre deflation prior to the collision which
 may have been the result of a tyre defect or a puncture.
- The percentage of vehicles with a defect which may have been detectable in an MOT generally appears to increase with the age and mileage of the vehicle.

Examination of the other in-depth accident databases yielded the following:

- VOSA accident database showed that:
 - Braking and tyre defects were found to be common contributory failure items for car and light goods vehicles
 - Braking, suspension and tyre defects were found to be the common contributory failure items for motorcycles.

Note: it is not possible to base national estimates on these findings as the representativeness of the accidents examined by VOSA is not known.

- Fatals Intermediate Database showed that:
 - For cars, about 3% of vehicles had a vehicle defect that was a contributory factor to the accident.
 - These were tyre defect only (56%), brake defect only (12%), tyre with something else (12%), brakes with something else (11%).

Note: The accidents in the database cover the period 1986-98, although over 90% date from 1990-95.

6 Likely impact to road safety (if any) to changes to MOT periodical inspections

The likely impacts (if any) to road safety from changes to the MOT test frequency by vehicle age and time since last inspection are investigated in this section. The following different test frequency scenarios are considered:

- first test at year 3, second at year 5 and annual thereafter, i.e. 3,2,1,1;
- first test at year 4 and annual thereafter, i.e. 4,1,1,1;
- first test at year 4, second at year 6 and annual thereafter, i.e. 4,2,1,1; and finally
- first test at year 4 and bi-annual thereafter, i.e. 4,2,2,2.

Where practicable, these potential testing strategies are compared with the current situation, which involves a roadworthiness and emission tests for most vehicles when they are three years old and every year thereafter (3,1,1,1).

Two different methods are used to estimate the potential impact on British road casualties which could be associated with changes to the MOT test frequency:

- Prediction based on a hypothetical relationship between MOT defects in the fleet and casualties; and a
- Prediction based on a comparison of the German roadworthiness testing experience.

Finally, some comments are provided with respect to the likely impacts (if any) to road safety from changes to the MOT test frequency, with a transition to testing on the basis of miles travelled since last inspection, rather than time or combination thereof.

6.1 Prediction based on a hypothetical relationship between MOT defects in the fleet and casualties

This approach consists of a theoretical model which has a number of limitations, principally due to the porosity of data available with respect to vehicle roadworthiness within the fleet and a lack of detailed knowledge regarding the scale and mechanisms by which vehicle defects contribute to accidents. However, we have assumed that any inaccuracy associated with the model will be of similar magnitude for each of the different test frequencies proposed.

There are three parts to this approach:

- Evaluation of the proportion of the vehicle fleet with defects.
 - Estimation of how changes to the MOT test regime could potentially influence the overall number of vehicles which fail an MOT annually.
- Correlation of MOT defects to accidents.
 - Develop a relationship between the proportion of vehicles which fail an MOT and vehicle defects which are contributory to injury road traffic accidents, by vehicle Class (MOT definitions).
- Predict the annual casualties based on changes to MOT test frequency
 - For the predicted number of MOT failures and the re-calculated estimates of contributory factors to accidents, assess the overall impact on casualties.

The model assesses how vehicle defects may contribute to accidents (roadworthiness). The model does not specifically account for how many people suffer more serious injury because of poor crashworthiness performance related to MOT defects, for example associated with seat belt or structural issues.

6.1.1 Proportion of vehicle fleet with defects

The proportion of MOT related defects in the vehicle fleet can be estimated based on the information presented in Section 5.1, where it is reported that approximately 40% of all vehicles tested failed an MOT in 2009. However, the MOT failure rates vary significantly between different Classes of vehicle and with respect to their age and cumulative mileage.

In addition, at the time of writing, there are a number of limitations and gaps in our knowledge with regards to MOT test data, these include:

- No precise quantification of the number of minor (non safety critical), serious and dangerous defects and their relative likelihood to contribute to or directly cause accidents.
 - For example, a broken number plate is very unlikely to cause a crash, whereas brakes found to be completely worn represent a magnitude of risk substantially higher.
 - An in-depth investigation of the rate and nature of the defects reported and the relative risk of different ones contributing to or directly causing accidents was beyond the scope of this work programme.
- The MOT certificate confirms that at the time of the test, without dismantling it, the vehicle under test meets the minimum acceptable environmental and road safety standards required by law. However, it doesn't mean that the vehicle is roadworthy for the length of time the certificate is valid.
 - For example, the vehicle may develop an MOT defect hours, weeks or months after the test, or indeed not at all in the annual inspection period.
 - This project has not specifically investigated how vehicles deteriorate with respect to time, due to normal use and the effects of age and/or mileage from the date the MOT certificate is awarded.
 - It is clear from the data that MOT defects occur over the current annual test cycle period, but the failure mechanisms fall beyond the practicable scope of this study.
 - Most importantly, the frequency with respect to time from inspection and the mechanisms associated with the most safety critical defects are not known.

Figure 6-1 gives a non-scaled schematic representation of how vehicle defects may increase, potentially exponentially with time. The first test is shown to appear when the vehicle is three years old (x axis) and every year thereafter. The figure outlines that all vehicles are brought to a roadworthy state immediately following an MOT pass, and then a proportion develop defects over the time period between tests. The nature of the deterioration, especially the onset of the most safety critical defects is not known, but is for ease of explanation assumed to be a hyperbolic function in Figure 1.

Figure 6-2 provides a different model of vehicle MOT measured system and structural deterioration, based on the assumption of an average linear relationship over the time between tests. In this model, vehicles develop defects at a constant rate, whereas in the model represented by Figure 1, defects are more likely to develop the greater the time from the MOT test date.

For Figures 6-1 and 6-2, the only data points which are known are shown by the red line, this represents the annual MOT failure percentage by the age of the vehicle at the time of the test. As vehicles age the number of MOT failures is seen to increase.

Figure 6-3 compares the two models (Figures 6-1 and 6-2) of vehicle MOT defect onset, non-linear and linear, each rising between the annual testing times and then falling to zero (fully compliant). This highlights the potential variation with respect to the number of vehicles in the fleet at any given time, which may or may not have MOT related defects.

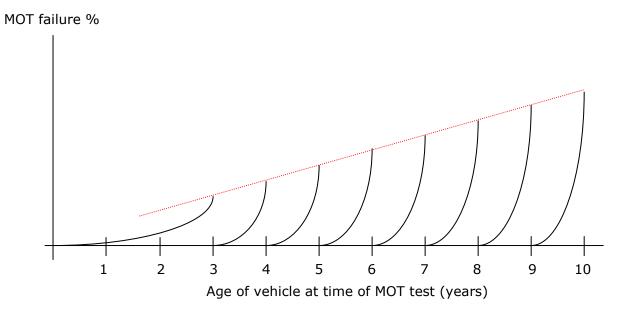


Figure 6-1: Non-linear failure model

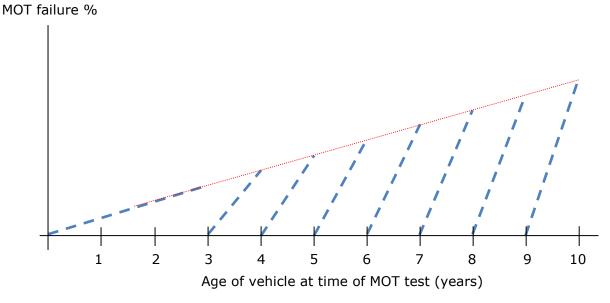


Figure 6-2: Linear failure model

Figure 6-3 only provides an indication of the proportion of vehicle defects currently within the fleet. It is possible that if vehicles develop safety critical defects in a non-linear way and these are not detected and corrected at annual MOT inspections, then a far higher proportion of un-roadworthy vehicles would be on the road.

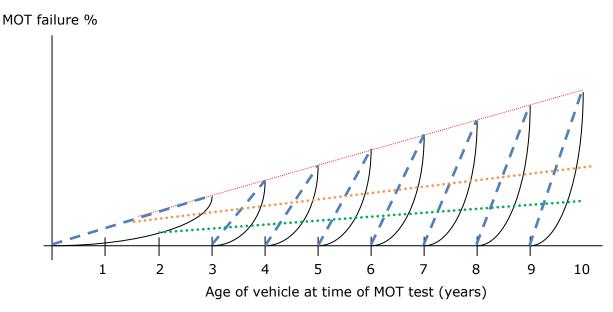


Figure 6-3: Potential range of 'MOT failure rate' in vehicle fleet model

Lower estimate of defects in vehicle population – based on non-linear model
Higher estimate of defects in vehicle population – based on linear model

6.1.2 Correlation of MOT defects to accidents

It is assumed that the number of road traffic accidents where vehicle defects were contributory factors or were more directly causative, is proportional to the number of vehicles on the road with defects present at any time. However, because of the uncertainty associated with quantifying the rate of vehicle defect onset following an MOT test and more importantly understanding this relationship for the most safety critical defects, the MOT failure rates for Classes 1, 2, 4 and 7 vehicles were chosen as the surrogate measures for vehicle roadworthiness compliance.

Response of public to changes to MOT test frequency

If the MOT test frequency was to change, by extending the time period between one, or a number of the current test intervals, this would remove the obligatory requirements for all the vehicles which were routinely checked at this time, and were then, where necessary brought back to a compliant state. This could lead to larger proportions of vehicles in the fleet being used with safety critical defects and subsequently contributing to or directly causing more accidents. Conversely, vehicle owners could largely compensate for this by following the law and maintaining their vehicles, regardless of the specific time intervals when MOT testing is required.

This is further complicated, for example, if the majority of safety critical defects occur 11 months after the award of the MOT, their current exposure on the road is low; but if these were then not detected for up to another 13 months (time of next test), this could have a significant and disproportionate effect of accidents. Whereas, if safety critical defects occur more evenly between the current testing points, this may then have a less dramatic effect on accident related casualties.

Further, it is not known how vehicle owners would react to any potential changes to MOT testing frequency. However, based on our own ad-hoc experience we believe that there are a wide range of motivations, attitudes and behaviours, which influence the decisions and actions associated with maintaining vehicles. It is therefore likely that there would

be a diverse range of responses to any change in MOT testing regime, in line with current vehicle maintenance behaviours. These can be categorised between two extremes, those who diligently maintain their vehicles, and those who largely ignore all maintenance and roadworthiness responsibilities, with the remainder somewhere between the two ends of this spectrum.

We estimate that vehicle owners could be categorised as either those who 'pull' or 'push' with regards to maintaining their vehicles. The 'pullers' actively look to maintain their vehicle and positively take steps to ensure that it is kept roadworthy. The 'pushers' require a trigger to prompt them to take action with respect to looking after their vehicle, such as a warning light or in the worst cases a breakdown or significant failure of a component, the latter two forcing them to take action. In reality there is a grey area between 'pushers' and 'pullers', with some people intermittently adopting each of these behaviours, depending on their current situation, which could be influenced by their time availability, their inclination to check their vehicle, perhaps related to poor weather conditions or their finances at any given time.

This complex human element represents a significant unknown with regards to how a change to the MOT test regime may affect road safety, will people continue to maintain their vehicles to current standards or not? What influence does the age of the vehicle have with respect to the owner's motivation to maintain it?

To gain a greater insight into these issues, one could segment people into categories regarding their attitudes and motivations towards vehicle maintenance, some potential examples are presented below, but these are only our initial thoughts and do not represent any known groupings. Further, we do not have the data to quantify the proportions of people who would range from the most diligent to the poorest with regards to their propensity to maintain a vehicle in a roadworthy state, regardless of annual or bi-annual MOT test requirements.

Some example categorisation groups could be:

• Pullers:

- On a weekly basis, those who check and maintain their vehicles to a full roadworthy state, including a full mechanical and system check, irrespective of MOT test frequency;
- On a monthly basis, those who check and maintain their vehicles to a full roadworthy state, including a full mechanical and system check, irrespective of MOT test frequency;

• Intermittent Pullers:

- On a monthly or seasonal basis, those who undertake some checks, for example tyre tread depth and washer fluid, but do not assess all safety critical components, for example brake pad or disk wear, resulting in a partial maintenance of the MOT roadworthiness systems, irrespective of MOT test frequency;
- Those who follow annual or mileage prompted service appointments with qualified and approved engineers, irrespective of MOT test frequency;

• Pushers:

- Only react when prompted by vehicle defects or issues with their vehicle, such as service warning lights (e.g. brake lining wear indicators), or MOT test frequency;
- Those who postpone all actions, even when there are clear warning signs until absolutely necessary, only respond to vehicle breakdowns or significant failures and MOT tests.

Estimated proportion of vehicles with defects in the fleet associated with changes to MOT test frequency

At the time of writing, it is not possible to assess based on any referenced evidence, how British people would behave with respect to a change in the MOT testing frequency. In the best case, this would result in a safety neutral outcome, with everyone maintaining their vehicle roadworthiness as they currently do, regardless of the MOT regime change. In this scenario, the hypothesis is that the MOT does not drive or influence behaviour. In other words all motorists are 'pullers'.

The opposite hypothesis is that everyone would now relax regarding their diligence towards maintaining their vehicle roadworthiness as the MOT was the catalyst or lever which encouraged or led to people keeping their vehicle in a good state, in this scenario vehicle defects would increase substantially. In other words all motorists are 'pushers'.

Lower estimate - half conform assumption

The lower estimate assumes that half of vehicle owners routinely check their vehicles regardless of the MOT test frequency and criteria; and half use the MOT test time to annually trigger any necessary maintenance or service work required, we have called this the 'half conform assumption'. This is believed to be a **conservative assumption**, as the rate of the onset of vehicle defects is likely to increase with time (e.g. it is not linear).

Higher estimate – non-conform assumption

The higher estimate assumes that all owners whose vehicles currently fail an MOT would not routinely check their vehicles without an MOT test to trigger necessary maintenance work, termed the 'non-conform assumption'. MOT defects would not be rectified and would remain in the fleet.

Figure 6-4 highlights how the changes to vehicle failure rates were calculated based on the 'half conform assumption' (lower estimate), for the test frequency scenario where the first test is at year 3, the second at year 5 and annually thereafter (i.e. 3,2,1,1 etc).

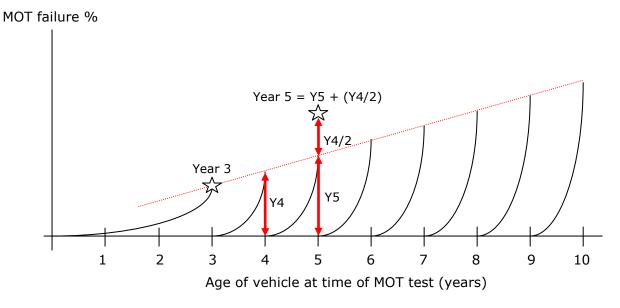


Figure 6-4: Non-linear 'MOT failure model rate' – adjusted MOT at year 3, 5, 1, 1 (lower estimate)

The model assumes the same failure rates by year as observed by the current testing regime, with the exception of Year 5; because it is assumed that only half of the vehicle owners in year 4 will rectify their MOT defects. The remaining half, stay in the vehicle

fleet and are summed to the defects which were already seen in Year 5, whilst keeping the total number of cars tested in that year constant.

For the non-conform assumption (higher estimate), the equation shown in Figure 6-4 becomes:

Year 5 = Y5 + Y4

Table 6-1 highlights the predicted changes to initial MOT failure rates for class 4 vehicles, based on 2009 data and a change to a 4,2,2,2 regime. The overall number of tests undertaken remains constant with respect to the age of the vehicle at the time of test and cumulative totals. Examples of the calculation used to predict the failures are:

For, 2005: Lower estimate = (21.4%/2) + (25.5%) * 2,535,437 = 917,575Higher estimate = (21.4%) + (25.5%) * 2,535,437 = 1,188,502

(Please note that percentages have been rounded to one decimal place, for lower estimate summed percentage was 36.19, presented as 36.2).

Table 6-1: Class 4 vehicles predicted change of Initial MOT failure rates (2009)

First year of	Current Clas	s 4: 3,1,1,1	Predicted Cla	iss 4: 4,2,2,2
use	Total*	Initial failure	Lower	Higher**
2007-2009	106,248	20,957	20,957	20,957
		19.7%	19.7	19.7
2006	2,497,636	535,687	535,687	535,687
		21.4%	21.4	21.4
2005 (4)	2,535,437	647,100	917,575	1,188,502
		25.5%	36.2	46.9
2004	2,648,338	828,033	828,033	828,033
		31.3%	31.3	31.3
2003 (6)	2,642,313	958,486	1,370,619	1,783,136
		36.3%	51.9	67.5
2002	2,622,344	1,048,784	1,048,784	1,048,784
		40.0%	40.0	40.0
2001 (8)	2,441,427	1,062,864	1,550,900	2,039,169
		43.5%	63.5	83.5
2000	2,097,577	1,009,113	1,009,113	1,009,113
		48.1%	48.1	48.1
1999 (10)	1,858,814	957,531	1,403,794	1,851,733
		51.5%	75.5	99.6
1998	1,596,205	861,446	861,446	861,446
		54.0%	54.0	54.0
1997 (12)	1,293,168	714,722	1,064,567	1,293,168
		55.3%	82.3	100.0
1996	949,051	535,066	535,066	535,066
		56.4%	56.4	56.4
1989-1995	2,050,789	1,121,278	1,698,806	2,050,789
(14+)		54.7%	82.8	100.0
<u><</u> 1988	498,662	191,950	191,950	191,950
		38.5%	38.5	38.5
Total	25,838,009	10,493,017	13,037,296	15,237,533
		40.6%	50.5%	59.0%

Note *: Total = 'Pass' + 'PRS' + 'Fail'; ** Limited to 100%

This method represents a relatively simple approach and there are a number of confounding factors, not least that other events could trigger a repair or replacement part to be fitted before the MOT date. These could include intervention from the police or

other enforcement agencies, or be related to accidents or breakdowns or general maintenance schedules. In addition, it is possible that some of the vehicles that failed and were brought back to a roadworthy state at Year 3 would also fail at Year 4, so there is a potential for double counting for a sub set of those which migrate into the following year with un-rectified defects. However, given that the characteristics and the rate of vehicle deterioration with regards to safety critical MOT defects from the time an MOT certificate is awarded are not well understood, this model is intended to give some indication of potential road safety effects.

Table 6-2 highlights the overall change in vehicle MOT failure rates for the different proposed options, using the 'half conform assumption'. The annual MOT failure rate increases from 40.1% to 49.8% based on 3,1,1,1 and 4,2,2,2 test frequencies respectively.

Table 6-2: Lower estimate (half conform) prediction for Normal MOT test
results by vehicle class and testing frequency (2009)

Vehicle	Initial failu	re rate (n = 2	27,410,161) -	Different test	frequency
Class	3,1,1,1	3,2,1,1	4,1,1,1	4,2,1,1	4,2,2,2
1 & 2	204,247	211,762	212,248	220,265	252,237
	21.4%	22.2%	22.1%	22.9%	26.3%
3	3,675	3,675	3,675	3,675	3,675
	29.7%	29.7%	29.7%	29.7%	29.7%
4	10,493,017	10,829,624	10,783,492	11,175,625	13,037,296
	40.6%	41.9%	41.7%	43.3%	50.5%
5	14,263	14,263	14,263	14,263	14,263
	34.7%	34.7%	34.7%	34.7%	34.7%
7	277,760	290,932	290,383	303,478	343,358
	50.00%	52.40%	52.30%	54.60%	61.80%
Total	10,992,962	11,350,256	11,304,061	11,717,306	13,650,829
	40.1%	41.4%	41.2%	42.7%	49.8%

6.1.3 Predict the annual casualties based on changes to MOT test frequency

Section 5.2 presents how frequently vehicle defects were identified as contributory factors based on a review of the available accident data. However, the national road casualty statistics (Stats19) and in-depth accident data were not collected to specifically identify the roadworthiness of vehicles at the time of the collision, and therefore underestimate the relative importance of vehicle defects as contributory factors. The extent of this underestimate is not known. Where national data is recorded, vehicle defects are recorded to contribute to approximately 2% of all accidents. From the OTS sample, this increased to approximately 2.5%. For the purpose of this study, an estimate of 3% has been chosen to reflect the underestimate which is known to exist.

Table 6-3 provides a breakdown of all the accidents and associated casualties in 2009, which involved at least one of the MOT classes of vehicle, and therefore these respective columns are not mutually exclusive. This table was derived from Table 23c in Reported Road Casualties Great Britain: 2009; this is included in Appendix D along with the intermediary table which is then summarised in Table 6-3. The lower part of Table 6-3 gives an estimate of the number of accidents and casualties related to vehicle defects in 2009, for example, 52 fatalities could have been associated with car defects.

Table 6-3: Distribution of accidents and casualties involving different MOT classes of vehicle by injury severity (2009)

		All accidents							
	m/cs <	50cc	m/cs >	50cc	Car	·s	LGVs		& casualties
	n	%	n	%	n	%	n	%	
Accidents	3,539	2.16	17,573	10.74	145,475	88.95	12,449	7.61	163,554
Casualties									
Killed	21	0.95	537	24.17	1,747	78.62	127	5.72	2,222
Serious	644	2.61	5,392	21.84	20,391	82.59	1,445	5.85	24,690
Slight	3,274	1.68	14,872	7.62	179,168	91.77	13,351	6.84	195,234
All	3,939	1.77	20,801	9.36	201,306	90.62	14,923	6.72	222,146
	Estima	ate of a	ccidents	& casu	alties ass	ociated	l with vel	hicle de	efects (3%)*
Accidents	106.17	0.06	527.19	0.32	4364.25	2.67	373.47	0.23	4906.62
Casualties									
Killed	0.63	0.03	16.11	0.73	52.41	2.36	3.81	0.17	66.66
Serious	19.32	0.08	161.76	0.66	611.73	2.48	43.35	0.18	740.70
Slight	98.22	0.05	446.16	0.23	5375.04	2.75	400.53	0.21	5857.02
All	118.17	0.05	624.03	0.28	6039.18	2.72	447.69	0.20	6664.38

A linear relationship has been assumed between the number of vehicles which fail an MOT and the number of accidents that were at least in part caused by vehicle defects. For example, the average car MOT failure rate was 40.6% (Table 6-2) in 2009 and it is assumed that this is proportional to the number of accidents and casualties where vehicle defects were a contributory factor, estimated to be 3% (for all vehicle types). This yields the following:

Accident rate $_{\text{Class4}} = 0.07389 * \text{Initial MOT failure rate}$ Accident rate $_{\text{Class12}} = 0.14019 * \text{Initial MOT failure rate}$ Accident rate $_{\text{Class7}} = 0.06 * \text{Initial MOT failure rate}$

Figure 6.5 provides a pictorial summary of this approach and suggests that between 1.5% and 6% of accidents are related to MOT measurable vehicle defects. The graph uses an MOT failure rate of 40%, which if extrapolated to a 100%, would result in between 3.75% and 15% of accidents being associated with vehicle defects.

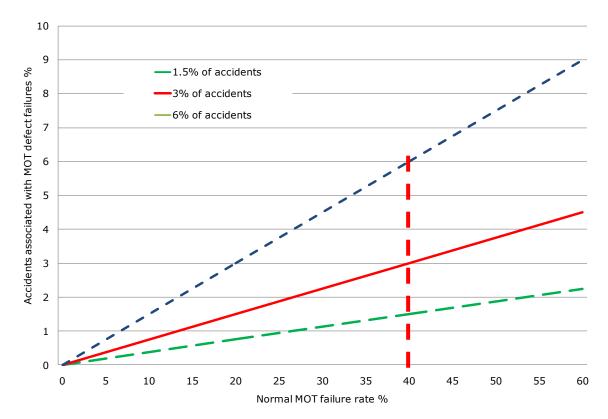


Figure 6-5: Hypothetical relationship between proportion of vehicles which fail an MOT and accidents associated with roadworthiness defects (proportion of accidents assumed for a 40.6% MOT failure rate)

The increase in the percentage of vehicle defects based on the 'half conform' and 'non-conform' assumptions (lower and higher estimates) were used to calculate functions; these were multiplied by the current accident data to provide estimates of the additional accidents and casualties that may occur if the MOT test frequency was to change.

The functions were calculated in two stages.

• Firstly by assessing the new accident rates for each vehicle class and MOT testing option. For example, the 4,2,2,2 option, class 4 vehicles resulted in the following changes to the accident rates:

o Lower estimate: Accident rate_{Class4} = 0.07389 * 50.5% = 3.73%o Higher estimate: Accident rate_{Class4} = 0.07389 * 59.0% = 4.36%

The second stage 'normalised' these new accident rates against the current rate:

o Lower estimate: Multiplier_{Class4} = 3.73/3 = 1.24o Higher estimate: Multiplier_{Class4} = 4.36/3 = 1.45

Based on the assumption that 3% of accidents are related to vehicle defects, approximately 52 deaths were associated with car involved defect-accidents in 2009 (Table 6-3). Using the lower and higher multipliers outlined above, for the 4,2,2,2 testing option, this would increase those killed to between approximately 65 (1.24*52.41) and 76 (1.45*52.41) per year; or an additional 13 or 24 deaths associated with car defect-accidents. Table 6-4 and Table 6-5 highlight the findings of this approach for the half conform and non-conform assumptions respectively.

Table 6-4: Prediction of additional accidents and casualties associated with potential changes to MOT test frequency – 'half conform' or lower estimate

MOT test	Predic	ted additional a	ccidents & casua	alties involving	All posidonts
frequency	m/cs <u><</u> 50cc	m/cs > 50cc	Cars	LGVs	All accidents & casualties
	n	n	n	n	& casualties
3,2,1,1					
Accidents	3.91	19.40	141.20	17.73	159.47
Casualties		0.50	. 70	0.40	
Killed	0.02	0.59	1.70	0.18	2.17
Serious	0.71	5.95	19.79	2.06	24.07
Slight	3.61	16.42	173.90	19.01	190.36
All	4.35	22.96	195.39	21.25	216.60
4,1,1,1 Accidents	3.46	17.17	113.68	16.99	138.86
Accidents	3.40	17.17	113.00	10.99	130.00
Casualties					
Killed	0.02	0.52	1.37	0.17	1.89
Serious	0.63	5.27	15.93	1.97	20.96
Slight	3.20	14.53	140.01	18.22	165.75
All	3.85	20.33	157.31	20.36	188.60
4,2,1,1					
Accidents	7.60	37.73	285.14	34.60	323.30
Casualties					
Killed	0.05	1.15	3.42	0.35	4.39
Serious	1.38	11.58	39.97	4.02	48.81
Slight	7.03	31.93	351.19	37.10	385.92
All	8.46	44.67	394.58	41.47	439.12
4,2,2,2					
Accidents	24.11	119.74	1059.65	88.22	1186.32
Casualties					
Killed	0.14	3.66	12.72	0.90	16.12
Serious	4.39	36.74	12.73 148.53	10.24	179.09
Slight	22.31	101.33	1305.08	94.61	1416.11
All	26.84	141.73	1466.33	105.75	1611.31
AII	20.07	171./3	1-100.00	103.73	1011.01

The larger the time gap between MOT testing intervals, the larger the predicted number of additional accidents and casualties which may be attributed to vehicle defect contributory factors.

Based on 2009 road injury statistics, the 4,2,2,2 option yielded the largest predicted increases in accidents and casualties per year, with estimates ranging from between an additional:

- 1,200 2,200 accidents;
- 16 30 fatalities;
- 180 330 serious casualties; and
- 1,400 2,600 slight causalities.

Table 6-5: Prediction of additional accidents and casualties associated with potential changes to MOT test frequency – 'non conform' or higher estimate

MOT test	Predic	alties involving	All a said sate		
frequency	m/cs <u><</u> 50cc	m/cs > 50cc	Cars	LGVs	All accidents & casualties
	n	n	n	n	& Casualties
3,2,1,1					
Accidents	7.80	38.72	281.62	35.45	319.36
Casualties	0.00				
Killed	0.05	1.18	3.38	0.36	4.34
Serious	1.42	11.88	39.47	4.11	48.21
Slight	7.21	32.77	346.84	38.02	381.22
All	8.68	45.83	389.70	42.50	433.77
4,1,1,1					
Accidents	7.58	37.64	226.40	33.96	260.06
Casualties	0.00				
Killed	0.04	1.15	2.72	0.35	3.53
Serious	1.38	11.55	31.73	3.94	39.26
Slight	7.01	31.85	278.83	36.42	310.44
All	8.44	44.55	313.29	40.71	353.23
4,2,1,1	15.00	70.75	F60.40	60.10	646.06
Accidents	15.86	78.75	569.48	69.10	646.96
Casualties	0.00				
	0.00	2.41	6.04	0.70	9.70
Killed Serious	0.09 2.89	2.41 24.16	6.84 79.82	0.70 8.02	8.79 97.66
Slight	14.67	66.65	79.82	74.11	772.27
All	17.65	93.22	788.03	82.84	878.73
4,2,2,2	17.03	93.22	700.03	02.04	070.73
Accidents	48.89	242.75	1977.89	176.42	2189.28
Accidents	40.03	212.73	1377.03	170.42	2103.20
Casualties					
Killed	0.29	7.42	23.75	1.80	29.74
Serious	8.90	74.49	277.24	20.48	330.49
Slight	45.23	205.44	2435.98	189.20	2613.33
All	54.41	287.35	2736.97	211.47	2973.57

6.1.4 Limitations of the model

The model has made predictions based on a hypothetical relationship between all MOT defects (RfRs, excluding Advisory notices) in the fleet and casualties. However, a conservative lower estimate ('half conform') was made with regards to the number of vehicles within the fleet which may develop additional defects if roadworthiness testing intervals were extended. This was made because:

- The nature and rate of onset of vehicle safety critical defects with respect to the time of the last MOT inspection is not known.
- It is not known how vehicle drivers and owners will behave without an annual 'nudge' in the form of an MOT; to check their vehicles' roadworthiness compliance. It is unknown how much work is undertaken by the average person to ensure their vehicle passes an MOT test, and if this is constant throughout the year, or done in a concentrated effort just before examination.

Further, all the items (RfRs) that contribute to the annual MOT initial failure rate, from minor items which can be corrected within minutes, for example a defective rear number

plate illumination bulb, to major and/or dangerous defects have all been grouped. It is recommended that more work should be undertaken to better understand the distribution and nature of these defects with respect to different classes of vehicle, their age and mileage.

Another key point to note is that the model was limited to assessing how vehicle defects may contribute to accidents (roadworthiness). The model does not specifically account for how many people suffer more serious injury because of poor crashworthiness performance related to MOT defects, for example associated with seat belt or structural issues. This is an area where more study could be undertaken to develop a better quantification of the relative size and nature of the group of accidents which have adverse injury outcome because of poor crashworthiness performance, due to MOT measureable defects.

Older vehicles are demonstrated to experience higher initial MOT failure rates, but this has not been correlated with accident data with respect to the age of the car and type of accident.

Finally, the assumption that vehicle defects in the fleet are directly related to contributory factors which lead to accidents has not been substantiated by this study. The correlation of drivers' behaviour and their vehicles' roadworthiness has not been investigated. There could be an intrinsic relationship with regards to their propensity to take risks and therefore experience accidents, and their general care of their vehicles, especially maintaining safety critical components and systems.

6.2 Prediction based on a comparison with the German roadworthiness testing experience

6.2.1 Introduction

The AUTOFORE project (AUTOFORE 2007a) was performed by CITA³ and part funded by the EU. The purpose of the project was to recommend improvements in roadworthiness enforcement in the European Union to ensure that the benefits accruing from the original design and manufacture of vehicles are retained, where justified, throughout the life of those vehicles. The project was completed in 2007 and made the following recommendations:

- Recommendation 1 Amend Directive 96/96/EC to increase the frequency of inspection for older light vehicles (Categories 5 and 6, as defined in the Directive).
 - The economic benefit of increased frequency of inspection of older light vehicles would be over 2 billion euros if vehicles of 8 years and over are inspected annually with a benefit-to-cost ratio of over 2. This is the minimum change that should be introduced. Although the benefit-to-cost ratio would be slightly reduced, introduction of annual inspection for vehicles 7 year and over would give higher benefits. As such, it should be considered seriously.
- Recommendation 2 Amend Directive 96/96/EC to include the examination of safety relevant electronic systems that are already widely fitted (airbags, ABS and ESC).
 - The benefit-to-cost ratio of inspecting ESC systems alone is 2.6. Additional benefits will arise from testing other systems, such as ABS and airbag systems. Initially the inspection should include, at a minimum,

-

³ CITA is an international not-for-profit association, based in Brussels, Belgium. It represents all types of organisations and stakeholders (government, private sector, dedicated inspection centres, garage-based test centres and test equipment manufacturers) who share a common interest in exchanging information, developing best practices and draft international standards in the field of road vehicle inspection.

observational checks on the system's completeness and functionality and for obvious signs of deterioration or deleterious alteration. Additional systems should be added when they become widely fitted. More comprehensive checks should be added when further work described in Recommendation 4 has been completed.

- Recommendation 3 Amend the scope of Directive 96/96/EC to include twowheeled motor vehicles (international categories L1 and L3).
 - Although an economic analysis could not be undertaken to quantify the magnitude of the benefits, good accident evidence supports the extension of the Directive to two-wheeled motor vehicles. There may be, however, problems with the inclusion of mopeds, but this objective should be pursued. Work should start in the near future on the preparation of a regulatory impact statement on these three recommendations.
- Recommendation 4 To be able to develop the options for introduction by 2020, the following 3 projects should be initiated.
 - Undertake a new study ("AUTOFORE 2") to research the magnitude of the contribution of vehicle defects to accidents and to trial new inspection systems suitable for inspecting the functionality of electronically based technologies.
 - Undertake further work to develop methods of improving compliance and the effectiveness and efficiency of vehicle inspection.
 - Undertake further work to develop proposals for further harmonisation of European roadworthiness standards.

Several of these recommendations were implemented by the EC in the recent updates to Directive 96/96/EC, namely Directive 2009/40/EC, Directive 2010/48/EU and EC recommendation 2010/378/EU (see Section 3.1). However, Recommendation 1, 'Increase the frequency of inspection for older light vehicles to annually', has not been implemented.

As part of the work to develop 'Recommendation 1' CITA performed a cost-benefit analysis. The most comprehensive part of analysis was performed for the option "annual inspection of passenger cars". The benefit-assessment consisted of safety benefits (accident-cost savings, congestion-cost savings), environmental benefits (lower environmental pollution and carbon-dioxide emission of passenger cars with petrol engine) and fuel consumption savings. It was found that the safety benefits dominated the results. The other benefits (environmental benefits and fuel consumption) accounted only for one percent of the total benefits.

Details of this analysis are reported for Germany which has an inspection frequency regime of a first test in year 3 and biannually thereafter (3, 2, 2, 2, 2) (AUTOFORE 2007c). It is interesting to note that the German analysis found that:

- Technical defects cause approximately twice as many accidents involving older cars (> 8 years) as new cars
- The risk of accidents as a result of technical defects increases with the time from the last periodic motor vehicle inspection.

The methodology used in the current work to estimate the potential dis-benefits of changing the UK inspection regime was to reverse the calculation methodology used for the benefit analysis performed by the AUTOFORE project for Germany.

6.2.2 AUTOFORE analysis

To calculate the benefit of annual inspection for older cars the methodology used for the AUTOFORE analysis was as follows (Figure 6-2):

- 1. Determine number of accidents with passenger cars
- 2. Estimate proportion of these accidents 'caused by' technical defects (Between 2.5% and 9.1%), i.e. proportion of these accidents with a 'vehicle defect' as a main contributory factor
- 3. Estimate proportion of these related to cars > 7 years old (70%)
- 4. Estimate proportion of these related to cars inspected over 1 year ago (75%)
- 5. Estimate proportion of these which annual inspection would have prevented (80%) Expressing this mathematically:

 B_{8+} = 'Benefit of annual inspection of cars \geq 8 years'

 $N_{Biannual}$ = 'Number of accidents with passenger cars with bi-annual inspection'

 N_{8+} = 'Number of accidents with passenger cars with annual inspection of older cars'

P = 'Proportion of accidents caused by technical defects'

Then
$$B_{8+} = N_{Biannual} *P*0.7*0.75*0.80 = N_{Biannual} *P*0.42$$

Rearranging
$$N_{Biannual} = N_{8+} + N_{Biannual} *P*0.42$$

$$N_{8+} = N_{Biannual} (1 - P*0.42)$$
 (1)

	Rate	Number o Accidents
Accidents with Passanger Cars		1.988.284
Thereof Caused by Technical Defects	BASt 1986 (a): 2,5%	a) 49.70
Thereof Caused by Technical Delects	DEKRA Accident Research 1996-2000 (b): 9,1%	a) 180.93
Thereof Caused by Cars > 7 Years	70,0%	a) 34.79
Thereof Gausea by Gars > 1 Tears	BASt Study GDV Study 1999	(a) 126.65
Thereof Caused in Second Year	75,0%	(a) 26.09
after PTI		(a) 94.99
Thereof Avoidable with Adittional	80,0%	a) 20.87
Annual Inspection	DEKRA Accident Research	(a) 75.99

Figure 6-2: Methodology used by AUTOFORE project to estimate benefit for Germany of change in inspection frequency to annual testing of cars \geq 8 years old.

An estimate of the benefit of annual inspection for cars greater than 3 years old can be made if the proportion in Step 3 is changed to represent cars greater than 3 years old. The TRL authors assumed that this was 90% on the basis of the data in the AUTOFORE report which showed that the defect rate increases with car age.

Expressing this mathematically

 B_{3+} = 'Benefit of annual inspection of cars \geq 3 years'

 $N_{Biannual}$ = 'Number of accidents with passenger cars with bi-annual inspection'

 N_{3+} = 'Number of accidents with passenger cars with annual inspection cars ≥ 3 years'

then
$$B_{3+} = N_{Biannual} *P*0.9*0.75*0.80 = N_{Biannual} *P*0.54$$

Rearranging
$$N_{Biannual} = N_{3+} + N_{Biannual} *P*0.54$$

$$N_{3+} = N_{Biannual} (1 - P*0.54)$$
 (2)

6.2.3 GB analysis

From the GB analysis of the prevalence and nature of defects above (Section 5), the number of accidents and casualties with the current inspection regime (3,1,1,1) are shown (Table 6-3). The number of accidents and casualties associated with vehicle defects was estimated to be 3%.

Using this information and equations (1) and (2) the increase in the number of accidents and casualties for a bi-annual inspection regime and a bi-annual inspection regime just for cars less than 8 years old in GB was estimated.

Note:

- The number of casualties was estimated using the assumption that they are directly related to the number of accidents
- The number of accidents and casualties for motorcycles and LGVs were estimated using the assumption that the proportions were the same as for cars.

 N_{3+} = 'Number of accidents with passenger cars with annual inspection of cars \geq 3 years', i.e. the current situation in GB

 $N_{Biannual}$ = 'Number of accidents with passenger cars with bi-annual inspection'

 N_{8+} = 'Number of accidents with passenger cars with annual inspection of older cars' P=0.03

The results are shown in Table 6-6 and Table 6-7. It can be seen that:

- For change to a bi-annual inspection regime it was estimated that there would be a 1.65 % increase in the number of accidents and casualties which equates to an additional 37 people killed and 407 seriously injured.
- For a change to a bi-annual inspection regime for cars less than 8 years old with an annual inspection for those greater or equal to 8 years it was estimated that there would be a 0.37% increase in the number of accidents and casualties which equates to an additional 8 people killed and 90 seriously injured.

Table 6-6: Increase in accidents and casualties for bi-annual inspection regime.

	For bi-a & casua	All accidents							
	m/cs <	50cc	m/cs >	50cc	Ca	rs	LGVs		&
	n	%	n	%	n	%	n	%	casualties
Accidents	58	1.65	289	1.65	2,396	1.65	205	1.65	2,693
Casualties									
Killed	0	1.65	9	1.65	29	1.65	2	1.65	37
Serious	11	1.65	89	1.65	336	1.65	24	1.65	407
Slight	54	1.65	245	1.65	2,950	1.65	220	1.65	3,215
All	65	1.65	343	1.65	3,315	1.65	246	1.65	3,658

Table 6-7: Increase in accidents and casualties for a bi-annual inspection regime for cars less than 8 years old with an annual inspection for those greater or equal to 8 years.

	For bi-a years ar equal to involvin	All accidents							
	m/cs <	50cc	m/cs >	· 50cc	Ca	rs	LG	Vs	&
	n	%	n	%	n	%	n	%	casualties
Accidents	13	0.37	64	0.37	532	0.37	46	0.37	598
Casualties									
Killed Serious	0	0.37 0.37	2 20	0.37 0.37	6 75	0.37 0.37	0 5	0.37 0.37	8 90
Slight	12	0.37	20 54	0.37	75 656	0.37	5 49	0.37	90 714
All	14	0.37	76	0.37	737	0.37	55	0.37	813

6.2.4 Limitations of the model

This approach has a number of limitations, not least that the in-depth data used to evaluate the proportion and nature of defects in the German fleet was formed of a relatively small sample size and was undertaken over ten years ago.

Nonetheless, it represents an alternative model based on the experience of a similar European country.

6.3 Retest on the basis of miles travelled since last inspection

This project has not been able to quantify the nature of the likely impacts (if any) to road safety from changes to the MOT test frequency, with a transition to retest on the basis of miles travelled since last inspection, rather than time or combination thereof. In part this is because of the large variation in the distances different classes of vehicle travel with respect to their age.

However, what is clear is that for newer vehicles at least, higher mileage is related to greater MOT failure rates. As vehicles age, the mileage covered is less important, and we believe in general that the age of the vehicle dominates the likelihood of an MOT failure. Newer vehicles which travel larger distances are very likely to have a different driver demographic and use profile, with respect to journey types, compared to older and other vehicles which cover the average distances on an annual basis. This is likely to directly affect their accident risk propensity.

It is not known how these newer vehicles which cover above annual mileage are maintained, but we expect that most are likely to be used for business purposes and therefore will have the incentive to be well looked after to retain their warranty and economical value. If vehicles are not maintained in line with the manufacturers' specification their value is significantly reduced. So, if they are maintained correctly, it is then likely that they are kept in a good condition, perhaps even better than most other vehicles in the fleet, and their relative high MOT failure rates could be more to do with a function of MOTs and service intervals coinciding. In addition, as the service time intervals will be shorter for vehicles which cover larger distances, they will be inspected more frequently, which in theory will reduce the amount of time at least that a vehicle may have a safety critical defect.

7 Conclusions

The study has concluded that:

- There is uncertainty with respect to the number of accidents which occur in the UK where vehicle defects are contributory. This is because no recent studies have been specifically undertaken to investigate these issues.
- This study has estimated that vehicle defects are likely to be a contributory factor in perhaps 3% of accidents in Great Britain.
- On average in 2009, approximately 40% of vehicles tested failed their initial (Normal) MOT test.
- In general,
 - $_{\odot}$ as vehicles age, the rate of MOT failure increases, for cars this reaches nearly 60% when they are 13 years old; and
 - the greater the cumulative distance travelled, the higher the rate of MOT failure, for example all cars which had driven over 90,000 miles experienced above a 50% failure rate.
- There is no established link between MOT measured roadworthiness and vehicle
 defects contributing to accidents, other than the common sense approach, where
 the greater the number of defects, especially the most safety critical ones in the
 fleet at a given time, the greater the likelihood of accidents being caused, at least
 in part, by roadworthiness issues.
- This study investigated the effect on road safety (if any) associated with a change to MOT testing frequency and found that the greater the distance between inspection dates, the greater the likelihood of adverse road safety consequences. Two different theoretical models were developed and used to provide an estimate of the magnitude of the number of accidents and casualties which may occur annually due to less frequent MOT testing.
 - The first model consisted of a prediction based on a hypothetical relationship between MOT defects in the fleet and casualties. The 4,2,2,2 option yielded the largest predicted increases, with an additional 1,200-2,200 accidents per year, 16-30 fatalities and 180-330 serious casualties, based on 2009 road injury statistics.
 - The second model was based on a prediction based on a comparison with the German roadworthiness testing experience. For change to a bi-annual inspection regime it was estimated that there would be a 1.65 % increase in the number of accidents and casualties which equates to an additional 37 people killed and 407 seriously injured.
- Although both approaches are not ideal, largely due to a lack of data upon which
 assumptions have been based, they consistently indicated an increase in
 accidents and casualties. However, it must be stressed that these are
 estimates only and further work would be required before a genuine
 quantification of the scale of these adverse road safety impacts will be
 known.
- It was not possible to quantify the nature of the likely impacts (if any) to road safety from changes to the MOT test frequency, with a transition to retest on the basis of miles travelled since last inspection, rather than time or combination thereof. However, on the data reviewed to date we believe the vehicle age is more important than miles travelled, partly because these two factors are related and partly because new vehicles which travel large distances are still likely to follow manufacturers' maintenance schedules and have regular service checks.

 Reducing the frequency of testing for newer vehicles is likely to have adverse road safety consequences, but these would be substantially greater for older vehicles as the data presented in this report already indicates their high MOT failure rates.

Acknowledgements

The work described in this report was carried out in the Safety Division of the Transport Research Laboratory. The authors are grateful to M J Edwards who carried out the technical review and auditing of this report.

References

AUTOFORE (2007a) 'AUTOFORE report: Study on the Future Options for Roadworthiness Enforcement in the European Union', http://www.cita-vehicleinspection.org/Home/Publications/Studies/Autofore2007/tabid/119/Default.aspx

AUTOFORE (2007b) Baum H, Schulz W, and Geibler T. 'Annex WP700: Cost-Benefit Analyses for Roadworthiness Options', http://www.cita-vehicleinspection.org/Portals/cita/autofore_study/LinkedDocuments/Cost-Benefit%20Analyses%20for%20Roadworthiness%20Options.pdf

AUTOFORE (2007c) 'Annex WP540: Analysis of pass/fail rates and accidents for different vehicle types in relation to PTI - frequency and vehicle age', http://www.cita-vehicleinspection.org/Portals/cita/autofore study/LinkedDocuments/Pass%20fail%20rates%20and%20accidents%20vs%20PTI%20fequency.pdf

Cuerden et al, (2010). On The Spot Phase III Report. Waiting publication date.

Reported Road Casualties Great Britain: 2009 Annual Report. Department for Transport

Appendix A Frequency of testing in EU-25 states in 2006

	Year after start of operation of vehicle											
	+	1	2	3	4	5	6	7	8	9	10	
Belgium	BE	<u> </u>		Ť	Š	Ť	Ť	Ť	Ť	Ť	Ť	Т.
Denmark	DK				S		+		Ť			
Germany	DE			S		Т		Т		T		
Greece	EL				S		Т		Т		Т	
Spain	ES				S		Т		Т		Т	Т
France	FR				S		Т		Т		Т	
Ireland	IE				S		Т		Т			
Italy	IT				S		Т		Т			
Luxembourg	LU			S	T	T	_	_	T	T	T	T
Netherlands	NL			S	Т	Т	Т	Т	Т	Т	Т	Т
Austria	AT			S		Т	Т	Т	Т	Т	Т	Т
Portugal	PT				S		Т		Т	Т	Т	Т
Finland	FI			S		Т	Т	Т	Т	Т	Т	Т
Sweden	SE			S		Т	Т	Т	Τ	Τ	Τ	Т
United	UK			S	Т	Т	Т	Т	Т	Т	Т	Т
Kingdom												
Cyprus	CY	n.a.										
Czech	CZ				S		Τ		T		T	
Republic												
Estonia	EE			S		Τ		Т		T	Τ	Τ
Hungary	HU	S			Т			Т		Τ		Τ
Latvia	LV	S	Τ	Τ	Τ	Т	Τ	Т	Τ	T	Τ	Τ
Lithuania	LT			s		Т		Т		Τ		Τ
Malta	MT	n.a.										
Poland	PL			S		Τ	Т	Т	Τ	T	Т	Τ
Slovak	SK			S	Т	Т	Т	Т	T	T	T	Т
Republic												
Slovenia	SI			s		T		Τ		T		T
EU 96/96					S		Η		Τ		T	

Annotations: S = First inspection after start of operation

T = Next obligatory vehicle inspection after S

n.a. = not available

UK data refer to Great Britain only

CITA (Ed.), General Questionnaire 2004, Brussels 2005; DEKRA Source:

Automobil GmbH (Ed.), International Strategies for Accident

Prevention, Technical Road Safety – DEKRA Technical Paper 58/05, Stuttgart 2005, p. 21; Autofore, WP200; own research

Appendix B MOT Scheme Database all tests (2008 and 2009)

Technical Notes:

Appendix B documents the prevalence of vehicles with roadworthiness defects in the UK population based on the findings from **all MOT tests** (initial and retests).

Where Reasons for Rejection are presented in this section (Appendix B) all are included (**Fail, PRS and Advisory**), **for all MOT tests** (initial and retests).

B.1 Motor cycle roadworthiness, classes 1 and 2 – 2008 and 2009 MOT tests

Table B1-1: Class 1 and 2 MOT test results by year of first use of vehicle (2008)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other*	
2006-2008	2242	199	371	228	3040
	73.8%	6.5%	12.2%	7.5%	100.0%
2005	72282	6109	8943	656	87990
	82.1%	6.9%	10.2%	.7%	100.0%
2004	73786	5889	9885	501	90061
	81.9%	6.5%	11.0%	.6%	100.0%
2003	76916	5995	10765	481	94157
	81.7%	6.4%	11.4%	.5%	100.0%
2002	74152	5860	10815	493	91320
	81.2%	6.4%	11.8%	.5%	100.0%
2001	70446	5719	11157	446	87768
	80.3%	6.5%	12.7%	.5%	100.0%
2000	65243	5311	10785	418	81757
	79.8%	6.5%	13.2%	.5%	100.0%
1999	60554	4937	9462	433	75386
	80.3%	6.5%	12.6%	.6%	100.0%
1998	48183	3930	7553	373	60039
	80.3%	6.5%	12.6%	.6%	100.0%
1997	37888	3217	5844	243	47192
	80.3%	6.8%	12.4%	.5%	100.0%
1996	25167	2121	4110	187	31585
	79.7%	6.7%	13.0%	.6%	100.0%
1995	18725	1585	3101	151	23562
	79.5%	6.7%	13.2%	.6%	100.0%
1988-1994	90714	8211	17299	698	116922
	77.6%	7.0%	14.8%	.6%	100.0%
<u><</u> 1987	125950	9132	13585	978	149645
_	84.2%	6.1%	9.1%	.7%	100.0%
Total	842248	68215	123675	6286	1040424
	81.0%	6.6%	11.9%	.6%	100.0%

Table B1-2: Class 1 and 2 MOT test results by mileage (2008)

Mileage at		Test F	Result		Total
time of test	Pass	PRS	Fail	Other*	
Not	12405	849	2056	3967	19277
Known	64.4%	4.4%	10.7%	20.6%	100.0%
1-	138032	9473	13031	518	161054
4,999	85.7%	5.9%	8.1%	.3%	100.0%
5,000-	161985	12570	20494	439	195488
9,999	82.9%	6.4%	10.5%	.2%	100.0%
10,000-	140150	11483	20599	355	172587
14,999	81.2%	6.7%	11.9%	.2%	100.0%
15,000-	108529	9330	17509	268	135636
19,999	80.0%	6.9%	12.9%	.2%	100.0%
20,000-	79490	7031	13844	203	100568
24,999	79.0%	7.0%	13.8%	.2%	100.0%
25,000-	57066	5064	9905	139	72174
29,999	79.1%	7.0%	13.7%	.2%	100.0%
30,000-	41037	3564	7522	108	52231
34,999	78.6%	6.8%	14.4%	.2%	100.0%
35,000-	28995	2564	5399	69	37027
39,999	78.3%	6.9%	14.6%	.2%	100.0%
40,000 +	74571	6287	13316	221	94395
	79.0%	6.7%	14.1%	.2%	100.0%
Total	842260	68215	123675	6287	1040437
	81.0%	6.6%	11.9%	.6%	100.0%

Table B1-3: Class 1 and 2 MOT test results by year of first use of vehicle (2008)

First year of		Moto	rbike cc – Failu	re %	
use	1-50	51-199	200-499	500-999	1000+
2006-2008	117	166	25	48	15
	17.5%	15.5%	8.1%	7.2%	4.6%
2005	2353	3149	550	2028	861
	18.7%	15.5%	9.3%	6.2%	5.3%
2004	2900	2996	655	2637	696
	21.1%	15.6%	10.7%	7.1%	5.1%
2003	2970	3262	665	3105	763
	20.8%	16.3%	10.6%	7.8%	5.5%
2002	2662	3256	664	3333	900
	21.6%	17.6%	10.8%	8.5%	6.0%
2001	2757	3326	591	3637	846
	21.2%	18.7%	10.9%	9.4%	6.5%
2000	2339	2611	624	4312	899
	21.2%	19.5%	12.3%	10.7%	7.5%
1999	1490	1571	660	4763	978
	21.3%	18.1%	12.8%	11.2%	8.2%
1998	800	965	603	4357	828
	21.6%	17.7%	13.3%	11.9%	8.5%
1997	344	590	553	3539	818
	19.2%	16.1%	13.3%	12.5%	8.8%
1996	180	551	472	2313	594
	18.3%	17.1%	14.0%	13.0%	9.6%
1995	110	383	475	1759	374
	18.2%	18.2%	13.5%	12.9%	10.1%
1988-1994	559	2906	3843	7913	2076
	16.0%	19.6%	15.8%	14.1%	11.4%
<u><</u> 1987	720	3583	3292	5040	950
	11.5%	10.9%	8.3%	8.3%	9.9%
Total	20301	29315	13672	48784	11598
	20.0%	16.2%	11.4%	10.1%	7.6%

Table B1-4: Class 1 and 2 MOT test results by mileage (2008)

Mileage at		Moto	rbike cc – Failu	re %	
time of test	1-50	51-199	200-499	500-999	1000+
Not	331	421	663	509	130
Known	13.7%	13.7%	10.0%	9.4%	7.4%
1-	3415	4362	1658	2815	780
4,999	14.0%	10.7%	7.4%	5.0%	4.6%
5,000-	5812	6245	1254	5824	1359
9,999	19.1%	15.5%	8.5%	6.9%	5.3%
10,000-	4664	6000	1367	7017	1550
14,999	22.6%	17.9%	10.1%	8.7%	6.4%
15,000-	2975	4427	1475	7172	1460
19,999	24.7%	18.9%	11.7%	10.7%	7.2%
20,000-	1620	3109	1479	6362	1274
24,999	26.7%	20.2%	13.0%	12.3%	8.0%
25,000-	807	1817	1335	4854	1092
29,999	27.6%	19.5%	14.0%	12.6%	9.2%
30,000-	320	1180	1149	3985	888
34,999	25.8%	20.3%	14.7%	14.1%	9.8%
35,000-	181	657	894	2947	720
39,999	29.0%	19.7%	14.9%	14.6%	10.5%
40,000 +	176	1097	2398	7299	2345
	23.6%	17.7%	15.4%	14.1%	11.6%
Total	20301	29315	13672	48784	11598
	20.0%	16.2%	11.4%	10.1%	7.6%

Table B1-5: Classes 1 and 2: System failure for motor cycles by first year of use (2008)

	Total		<u><</u> 1987	1994	1988-		1995		1996		1997		1998		1999		2000		2001		2002		2003		2004		2005	2008	2006-		use	year of	First
20.4%	162200	21.9%	20478	18.2%	21326	17.3%	3480	17.7%	4835	17.7%	6947	17.8%	8903	18.5%	11421	19.8%	13566	20.8%	14448	21.1%	14032	22.2%	14747	23.0%	13830	25.0%	13561	28.5%	626	signalling	œ	Lighting	
22.5%	179034	29.7%	27770	25.1%	29498	22.9%	4604	22.0%	6027	20.8%	8152	20.9%	10410	21.0%	13003	21.6%	14795	21.5%	14939	21.5%	14274	20.6%	13654	19.3%	11626	18.1%	9839	20.2%	443		suspension	Steering &	
22.9%	182148	19.3%	18031	23.7%	27869	24.2%	4862	24.5%	6693	24.9%	9759	25.5%	12708	24.6%	15222	24.0%	16470	23.5%	16370	22.9%	15245	21.7%	14365	21.6%	13010	20.5%	11104	20.0%	440			Brakes	
16.6%	132405	12.3%	11519	14.4%	16906	16.4%	3298	16.8%	4585	16.9%	6616	17.2%	9098	17.6%	10886	16.8%	11519	17.8%	12367	18.3%	12146	18.5%	12249	18.6%	11182	18.8%	10194	15.1%	332		wheels	Tyres &	
6.5%	52080	5.8%	5377	6.6%	7736	7.5%	1508	7.3%	1998	7.7%	3033	7.4%	3678	7.1%	4364	7.0%	4765	6.4%	4479	6.2%	4101	6.4%	4228	6.1%	3663	5.6%	3052	4.5%	86		exhaust	Fuel &	System Failure
1.9%	15123	2.4%	2237	2.2%	2579	1.7%	347	1.8%	479	1.6%	636	1.6%	807	1.7%	1058	1.9%	1322	2.0%	1362	1.7%	1153	1.7%	1154	1.8%	1061	1.6%	881	2.1%	47		structure	Body &	ure
6.3%	50343	5.7%	5331	7.0%	8172	7.0%	1415	6.9%	1900	7.4%	2916	6.9%	3427	6.8%	4181	6.1%	4173	5.4%	3788	5.5%	3625	5.9%	3885	6.3%	3785	6.7%	3626	5.4%	119	,	system	Drive	
1.8%	14659	1.3%	1231	1.6%	1843	1.7%	340	1.8%	487	1.7%	660	1.8%	902	1.8%	1138	1.9%	1303	1.6%	1131	1.9%	1295	2.2%	1426	2.4%	1439	2.6%	1416	2.2%	48		plat & VIN	Registration	
1.1%	8781	1.5%	1374	1.3%	1556	1.2%	247	1.2%	340	1.1%	422	1.0%	480	.9%	562	.9%	639	1.0%	679	.9%	610	.9%	609	1.0%	619	1.1%	600	2.0%	44			Other	
100.0%	796773	100.0%	93348	100.0%	117485	100.0%	20101	100.0%	27344	100.0%	39141	100.0%	49921	100.0%	61835	100.0%	68552	100.0%	69563	100.0%	66481	100.0%	66317	100.0%	60215	100.0%	54273	100.0%	2197				Total

TRL 52 PPR565

Table B1-6: Classes 1 and 2: System failure for motor cycles by mileage at time of test (2008)

Brakes Tyres & Fuel &
wheels
2137 1823
16.3% 13.9%
13070 11238
16.8% 14.4%
25004 24938
22.1% 18.1%
26235 195
21466 14885
24.0% 16.6%
16447 10514
13025 7522
25.6% 14.8%
9807 5320
26243 13209
28.1% 14.1%
22.9% 16.6%

PPR565

Table B1-7: Class 1 and 2 MOT test results by year of first use of vehicle (2009)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other	
2007-2009	2244	216	368	224	3052
	73.5%	7.1%	12.1%	7.3%	100.0%
2006	70301	6649	9229	674	86853
	80.9%	7.7%	10.6%	.8%	100.0%
2005	71841	6363	9516	464	88184
	81.5%	7.2%	10.8%	.5%	100.0%
2004	68269	5969	9688	470	84396
	80.9%	7.1%	11.5%	.6%	100.0%
2003	70136	6199	10405	498	87238
	80.4%	7.1%	11.9%	.6%	100.0%
2002	67679	5945	10280	445	84349
	80.2%	7.0%	12.2%	.5%	100.0%
2001	64079	5652	10340	429	80500
	79.6%	7.0%	12.8%	.5%	100.0%
2000	59526	5458	10146	427	75557
	78.8%	7.2%	13.4%	.6%	100.0%
1999	55676	5110	9065	365	70216
	79.3%	7.3%	12.9%	.5%	100.0%
1998	44589	4138	7342	284	56353
	79.1%	7.3%	13.0%	.5%	100.0%
1997	35293	3256	5903	236	44688
	79.0%	7.3%	13.2%	.5%	100.0%
1996	23321	2331	3918	180	29750
	78.4%	7.8%	13.2%	.6%	100.0%
1989-1995	93950	9069	17397	684	121100
	77.6%	7.5%	14.4%	.6%	100.0%
<u><</u> 1988	134360	10833	14718	1088	160999
	83.5%	6.7%	9.1%	.7%	100.0%
Total	861264	77188	128315	6468	1073235
	80.2%	7.2%	12.0%	.6%	100.0%

Table B1-8: Class 1 and 2 MOT test results by mileage at time of test (2009)

Mileage at		Test F	Result		Total
time of test	Pass	PRS	Fail	Other	
Not	13241	1113	2245	4200	20799
Known	63.7%	5.4%	10.8%	20.2%	100.0%
1-	141944	11144	13966	519	167573
4,999	84.7%	6.7%	8.3%	.3%	100.0%
5,000-	162802	14008	20702	421	197933
9,999	82.3%	7.1%	10.5%	.2%	100.0%
10,000-	141351	12738	21163	321	175573
14,999	80.5%	7.3%	12.1%	.2%	100.0%
15,000-	110813	10476	18283	273	139845
19,999	79.2%	7.5%	13.1%	.2%	100.0%
20,000-	82431	7836	14080	176	104523
24,999	78.9%	7.5%	13.5%	.2%	100.0%
25,000-	59103	5938	10642	148	75831
29,999	77.9%	7.8%	14.0%	.2%	100.0%
30,000-	42555	4063	7845	108	54571
34,999	78.0%	7.4%	14.4%	.2%	100.0%
35,000-	30286	2902	5617	76	38881
39,999	77.9%	7.5%	14.4%	.2%	100.0%
40,000 +	76746	6971	13772	229	97718
	78.5%	7.1%	14.1%	.2%	100.0%
Total	861272	77189	128315	6471	1073247
	80.2%	7.2%	12.0%	.6%	100.0%

Table B1-9: Class 1 and 2 MOT test results – failure percentages by motor cycle cylinder capacity and by year of first use (2009)

First year of			cycle cc – Failu		
use	1-50	51-199	200-499	500-999	1000+
2007-2009	113	184	25	36	10
	17.6%	16.3%	8.9%	5.6%	2.8%
2006	2239	3449	560	2201	780
	19.3%	15.9%	9.7%	6.6%	5.3%
2005	2246	3334	612	2412	912
	19.3%	16.2%	10.0%	7.2%	5.6%
2004	2537	2900	638	2855	756
	21.8%	16.3%	11.0%	8.0%	5.6%
2003	2533	3082	707	3261	821
	21.2%	17.1%	11.7%	8.6%	6.1%
2002	2206	2935	719	3390	1030
	21.5%	17.9%	12.3%	9.1%	7.1%
2001	2244	2895	601	3652	948
	21.2%	18.6%	12.0%	10.0%	7.4%
2000	1887	2286	573	4410	990
	21.1%	19.4%	12.2%	11.4%	8.6%
1999	1176	1498	581	4775	1035
	20.9%	19.1%	12.3%	11.8%	9.0%
1998	602	910	606	4368	856
	20.3%	18.7%	14.1%	12.6%	9.0%
1997	317	557	558	3578	893
	20.3%	17.0%	14.3%	13.3%	9.8%
1996	139	465	461	2235	618
	17.0%	16.1%	14.6%	13.2%	10.3%
1989-1995	496	2554	3612	8474	2261
	16.2%	19.1%	15.3%	13.9%	11.3%
<u><</u> 1988	703	3851	3573	5495	1096
	10.5%	10.9%	8.4%	8.4%	10.2%
Total	19438	30900	13826	51142	13006
	19.8%	16.2%	11.3%	10.3%	7.9%

Table B1-10: Class 1 and 2 MOT test results – failure percentages by motor cycle cylinder capacity and by mileage (2009)

Mileage at		Moto	rbike cc – Failu	re %	
time of test	1-50	51-199	200-499	500-999	1000+
Not	388	478	715	529	135
Known	15.0%	14.1%	9.8%	9.3%	7.4%
1-	3289	4851	1837	3106	880
4,999	14.1%	11.1%	7.9%	5.3%	4.9%
5,000-	5337	6467	1317	6021	1560
9,999	18.8%	15.4%	8.7%	7.0%	5.8%
10,000-	4443	6198	1482	7287	1753
14,999	22.3%	17.9%	10.7%	9.0%	6.8%
15,000-	2913	4785	1400	7504	1681
19,999	24.6%	19.3%	11.2%	10.9%	7.7%
20,000-	1576	3135	1395	6529	1445
24,999	25.5%	19.5%	12.4%	12.1%	8.5%
25,000-	799	1950	1345	5323	1225
29,999	27.0%	19.6%	14.0%	13.2%	9.4%
30,000-	374	1214	1062	4264	931
34,999	26.9%	20.2%	14.0%	14.3%	9.5%
35,000-	147	713	920	3049	788
39,999	25.1%	19.5%	15.4%	14.3%	10.7%
40,000 +	172	1109	2353	7530	2608
	21.3%	17.2%	15.2%	14.3%	11.8%
Total	19438	30900	13826	51142	13006
	19.8%	16.2%	11.3%	10.3%	7.9%

Table B1-11: Classes 1 and 2 MOT test items – System failure for motor cycles by first year of use (2009)

	Total		≤ 1988	1995	1989-		1996		1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	2009	2007-		use	year of	First
19.7%	173449	21.0%	22572	17.4%	21815	16.8%	4655	16.9%	6993	16.9%	8703	17.8%	11266	18.9%	13082	19.6%	13694	20.0%	13706	21.0%	14479	21.4%	13703	22.2%	13699	24.2%	14419	26.7%	663	signalling	œ	Lighting	
21.8%	192260	28.8%	31029	24.3%	30517	21.5%	5974	21.0%	8669	20.8%	10715	20.8%	13183	21.0%	14512	20.9%	14634	20.4%	13948	19.9%	13743	19.5%	12473	18.4%	11384	18.5%	10973	20.4%	506		suspension	Steering &	
22.7%	200510	19.6%	21138	23.6%	29662	24.8%	6894	24.8%	10274	25.2%	13021	24.8%	15712	23.9%	16523	23.7%	16560	22.7%	15558	22.4%	15468	21.6%	13821	21.5%	13301	20.4%	12103	19.1%	475			Brakes	
16.8%	148089	12.7%	13636	14.7%	18463	16.7%	4645	16.9%	6983	17.3%	8920	17.5%	11070	16.9%	11663	17.4%	12172	18.6%	12724	18.2%	12572	18.8%	12021	18.8%	11625	18.8%	11199	15.9%	396		wheels	Tyres &	
6.9%	60740	6.0%	6476	7.1%	8951	7.6%	2120	8.0%	3311	7.6%	3906	7.2%	4592	7.2%	4999	7.1%	4941	7.0%	4806	6.9%	4736	6.9%	4415	6.6%	4045	5.6%	3316	5.1%	126		exhaust	Fuel &	System Failure
1.8%	16206	2.3%	2500	2.0%	2501	1.7%	462	1.7%	686	1.6%	846	1.7%	1104	1.9%	1297	1.9%	1305	1.7%	1176	1.8%	1238	1.6%	1026	1.6%	1006	1.7%	1001	2.3%	58		structure	Body &	ure
6.7%	58921	6.2%	6631	7.4%	9361	7.5%	2092	7.4%	3062	7.1%	3665	7.0%	4447	6.9%	4738	6.2%	4320	6.0%	4110	6.0%	4147	6.4%	4065	6.7%	4162	6.6%	3950	6.9%	171		system	Drive	
2.5%	22077	2.0%	2102	2.3%	2844	2.3%	649	2.4%	988	2.7%	1401	2.2%	1387	2.5%	1708	2.2%	1569	2.6%	1778	2.8%	1954	2.9%	1883	3.0%	1854	3.2%	1909	2.1%	51		plat & VIN	Registration	
1.1%	9290	1.4%	1502	1.2%	1564	1.0%	288	1.0%	409	.8%	425	1.0%	631	.9%	622	1.0%	691	.9%	622	.9%	625	.9%	603	1.1%	678	1.0%	591	1.6%	39			Other	
100.0%	881542	100.0%	107586	100.0%	125678	100.0%	27779	100.0%	41375	100.0%	51602	100.0%	63392	100.0%	69144	100.0%	69886	100.0%	68428	100.0%	68962	100.0%	64010	100.0%	61754	100.0%	59461	100.0%	2485				Total

Table B1-12: Classes 1 and 2 MOT test items – System failure for motor cycles by mileage at time of test (2009)

Total				15779	100.0%	89794	100.0%	136169	100.0%	141839	100.0%	125655	100.0%	98628	100.0%		100.0%		100.0%	40843	100.0%	101052	100.0%	881543	
	Other			231	1.5%	1075	1.2%	1336	1.0%	1337	%6'	1197	1.0%	975	1.0%	741	1.0%	616	1.1%	475	1.2%	1307	1.3%	9290	
	Registration	plat & VIN		746	4.7%	3280	3.7%	4205	3.1%	2998	2.6%	2929	2.3%	2263	2.3%	1524	2.0%	1108	2.0%	250	1.8%	1609	1.6%	22077	
	Drive	system		898	5.5%	4698	5.2%	8003	2.9%	9820	%6'9	8933	7.1%	7262	7.3%	2288	7.4%	4331	7.7%	2986	7.3%	6432	6.4%	58921	
ure	Body &	structure		294	1.9%	1664	1.9%	2492	1.8%	2590	1.8%	2276	1.8%	1853	1.9%	1383	1.8%	366	1.8%	722	1.8%	1937	1.9%	16206	
System Failure	Fuel &	exhaust		1003	6.4%	6154	%6.9	6696	7.1%	9920	7.0%	8882	7.1%	6846	%6'9	5253	7.0%	3837	%8.9	2692	%9'9	6451	6.4%	60740	
	Tyres &	wheels		1991	12.6%	12866	14.3%	27176	20.0%	25836	18.2%	21918	17.4%	16699	16.9%	12102	16.1%	8722	15.5%	6138	15.0%	14641	14.5%	148089	
	Brakes			2706	17.1%	14779	16.5%	26245	19.3%	31177	22.0%	29088	23.1%	23631	23.9%	18719	24.9%	14472	25.7%	10864	26.6%	28829	28.5%	200510	
	Steering &	suspension		3960	25.1%	21316	23.7%	27312	20.1%	29070	20.5%	26344	21.0%	21313	21.5%	16695	22.2%	12710	22.6%	9513	23.3%	24027	23.8%	192260	
	Lighting	త	signalling	3980	25.2%	23962	26.7%	29701	21.8%	28426	20.0%	24088	19.2%	18116	18.3%	13167	17.5%	9491	16.9%	0029	16.4%	15819	15.7%	173450	
Mileage	at time	of test		Not	Known	1-	4,999	-000′5	666'6	10,000-	14,999	15,000-	19,999	-000'07	24,999	-22,000-	29,999	-000′08	34,999	-000'58	39,999	40,000	+	Total	

TRL

B.2 Cars, passenger vehicles and light goods vehicles roadworthiness, class 4 – 2008 and 2009 MOT tests

Table B2-1: Class 4 MOT test results by year of first use of vehicle (2008)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other*	
2006-2008	97644	8303	12053	3769	121769
	80.2%	6.8%	9.9%	3.1%	100.0%
2005	2344165	221694	341915	25989	2933763
	79.9%	7.6%	11.7%	.9%	100.0%
2004	2416844	246290	437757	21869	3122760
	77.4%	7.9%	14.0%	.7%	100.0%
2003	2386198	273912	552658	20260	3233028
	73.8%	8.5%	17.1%	.6%	100.0%
2002	2360830	291283	640445	20302	3312860
	71.3%	8.8%	19.3%	.6%	100.0%
2001	2208481	279501	694340	19780	3202102
	69.0%	8.7%	21.7%	.6%	100.0%
2000	1923759	237309	723164	18639	2902871
	66.3%	8.2%	24.9%	.6%	100.0%
1999	1753177	215183	746341	18228	2732929
	64.2%	7.9%	27.3%	.7%	100.0%
1998	1589241	185995	749066	18071	2542373
	62.5%	7.3%	29.5%	.7%	100.0%
1997	1340185	149154	672291	16362	2177992
	61.5%	6.8%	30.9%	.8%	100.0%
1996	1027478	108679	549398	13605	1699160
	60.5%	6.4%	32.3%	.8%	100.0%
1995	767945	77202	421723	10853	1277723
	60.1%	6.0%	33.0%	.8%	100.0%
1988-1994	1656028	152036	900958	24913	2733935
	60.6%	5.6%	33.0%	.9%	100.0%
<u><</u> 1987	418749	26684	153518	7642	606593
	69.0%	4.4%	25.3%	1.3%	100.0%
Total	22290724	2473225	7595627	240282	32599858
	68.4%	7.6%	23.3%	.7%	100.0%

Table B2-2: Class 4 MOT test results by mileage at the time of test (2008)

Mileenek		T) IL		T-4-1
Mileage at	_	Test F			Total
time of test	Pass	PRS	Fail	Other*	
Not known	67890	8312	59814	163467	299483
	22.7%	2.8%	20.0%	54.6%	100.0%
1-	3811782	322379	625078	12536	4771775
29,999	79.9%	6.8%	13.1%	.3%	100.0%
30,000-	2451962	253951	517348	6473	3229734
39,999	75.9%	7.9%	16.0%	.2%	100.0%
40,000-	2457635	279656	642789	6536	3386616
49,999	72.6%	8.3%	19.0%	.2%	100.0%
50,000-	2326584	280261	727155	6715	3340715
59,999	69.6%	8.4%	21.8%	.2%	100.0%
60,000-	2131824	262753	769141	6587	3170305
69,999	67.2%	8.3%	24.3%	.2%	100.0%
70,000-	1895387	234060	765974	6491	2901912
79,999	65.3%	8.1%	26.4%	.2%	100.0%
80,000-	1635471	199755	718838	5981	2560045
89,999	63.9%	7.8%	28.1%	.2%	100.0%
90,000-	1366704	163685	641664	5613	2177666
99,999	62.8%	7.5%	29.5%	.3%	100.0%
100,000-	1006173	120954	482110	4098	1613335
109,999	62.4%	7.5%	29.9%	.3%	100.0%
110,000-	794544	93082	394418	3525	1285569
119,999	61.8%	7.2%	30.7%	.3%	100.0%
120,000-	619303	70961	318161	2872	1011297
129,999	61.2%	7.0%	31.5%	.3%	100.0%
130,000 +	1725480	183418	933145	9397	2851440
	60.5%	6.4%	32.7%	.3%	100.0%
Total	22290739	2473227	7595635	240291	32599892
	68.4%	7.6%	23.3%	.7%	100.0%

Table B2-3: Percentage failure for Class 4 MOT test results by year of first use of vehicle and mileage at time of test (2008)

First year			Mileag	e at time	of test			Total
of use	N/K	1-30K	30-60K	60-90K	90- 120K	120- 150K	150K +	
2006-2008	-	-	-	-	-	-	-	9.9
2005	5.7	9.0	13.6	17.1	19.5	21.1	19.1	11.7
2004	9.7	9.8	14.9	18.3	20.3	22.3	22.9	14.0
2003	13.8	11.3	16.9	20.5	22.5	23.9	25.5	17.1
2002	15.7	12.0	18.0	21.8	23.8	25.3	26.9	19.3
2001	19.8	13.2	19.3	23.4	25.6	26.9	28.5	21.7
2000	22.1	15.2	21.5	26.0	28.2	29.4	30.7	24.9
1999	24.7	19.4	23.1	27.8	29.8	30.8	31.9	27.3
1998	26.6	26.7	24.2	29.5	31.5	32.4	33.4	29.5
1997	28.0	30.0	25.5	30.4	32.5	33.4	34.3	30.9
1996	27.9	32.8	27.2	31.7	33.6	34.3	34.9	32.3
1995	26.0	32.5	28.0	32.3	34.1	34.8	35.6	33.0
1988-1994	23.7	31.5	28.8	32.1	33.9	34.7	35.1	33.0
<u><</u> 1987	14.1	21.5	24.5	25.9	28.6	32.1	33.5	25.3
Total	20.0	13.1	19.0	26.1	29.9	31.9	33.2	23.3

Table B2-4 Class 4 MOT failure items by first year of use (2008)

Lighting &	_				מאמנים וו בשומו ע						lotal
signalling	Steering	Suspension	Brakes	Tyres	Road	Seat belts	Body & structure	Fuel & exhaust	Drivers view of	Other	
17833	2193	6453	18962	23554	1045	899	325	1278	7800	966	81308
425449	63070	179753	569695	736846	26364	17784	6510	47220	244146	29381	2345618
18.1%	2.7%	7.7%	24.3%	31.4%	1.1%	%8.	.3%	2.0%	10.4%	1.3%	100.0%
546563	20996	317586	803874	806940	27719	20642	7940	128809	256252	34174	3047106
17.9%	3.2%	10.4%	26.4%	26.5%	%6.	.7%	.3%	4.2%	8.4%	1.1%	100.0%
928989	112601	229670	970371	877769	30223	24861	11313	245922	296140	48900	3834146
17.9%	2.9%	13.8%	25.3%	22.9%	%8.	%9:	.3%	6.4%	7.7%	1.3%	100.0%
839907	120240	731040	1148676	626806	32658	32035	16096	318795	668288	58804	4545129
18.5%	2.6%	16.1%	25.3%	20.0%	.7%	.7%	.4%	7.0%	7.4%	1.3%	100.0%
935180	126420	876496	1338843	884869	33101	42693	24864	379708	363843	28282	5064402
18.5%	2.5%	17.3%	26.4%	17.5%	.7%	%8.	.5%	7.5%	7.2%	1.2%	100.0%
941547	148605	1026843	1417223	798564	32653	60517	46270	479154	362969	75298	5389643
17.5%	2.8%	19.1%	26.3%	14.8%	%9:	1.1%	%6.	8.9%	6.7%	1.4%	100.0%
1040745	158122	1095330	1503118	754154	32597	76179	67092	516357	371335	72683	5687712
18.3%			26.4%		%9:	1.3%	1.2%	9.1%	6.5%	1.3%	100.0%
1019414	156689	~	1532881	' '	29449	113627	109151	523494	365687	72833	5831272
17.5%	2.7%		26.3%	12.2%	.5%	1.9%	1.9%	%0.6	6.3%	1.2%	100.0%
880828	143513		1383789	613188	25301	125839	124880	471372	327536	71044	5296635
16.6%	2.7%	21.3%	26.1%	11.6%	.5%	2.4%	2.4%	8.9%	6.2%	1.3%	100.0%
694086	126155	974054	1138314	476093	19599	111114	125499	395429	263210	20669	4383456
15.8%	2.9%	22.2%	26.0%	10.9%	.4%	2.5%	2.9%	9.0%	%0'9	1.4%	100.0%
526900	110474	769930	848205	352367	13898	91332	111459	307333	199373	47192	3378463
15.6%	3.3%	22.8%	25.1%	10.4%	.4%	2.7%	3.3%	9.1%	5.9%	1.4%	100.0%
1059381	267478	1745665	1689960	687270	24934	240083	311573	620727	418863	62836	7161313
14.8%	3.7%	24.4%	23.6%	%9.6	.3%	3.4%	4.4%	8.7%	5.8%	1.3%	100.0%
210706	26775	299385	271880	64917	4250	36934	72394	82903	72695	13228	1206067
17.5%	6.4%	24.8%	22.5%	5.4%	.4%	3.1%	6.0%	6.9%	%0.9	1.1%	100.0%
9824945 17.2%	1708942 3.0%	10875348 19.0%	14635191 25.6%	8699729 15.2%	333791 .6%	994539	1035366 1.8%	4518501 7.9%	3887748 6.8%	738170 1.3%	57252270 100.0%

PPR565

Table B2-5: Class 4 vehicles MOT failure items by system by mileage at time of test (2008)

100.0%	1.3%	6.8%	7.9%	1.8%	1.7%	.6%	15.2%	25.6%	19.0%	3.0%	17.2%	
57252319	738170	3887754	4518505	1035373	994540	162222	0526698	14635195	10875359	1708948	9824954	Total
100.0%	1.4%	6.2%	7.4%	2.7%	2.1%	.4%	10.8%	25.0%	22.1%	4.3%	17.6%	+
4175260	58563	257211	310868	112152	89119	17450	450186	1042624	921269	181320	734498	150,000
100.0%	1.4%	6.3%	8.0%	2.2%	1.9%	.5%	11.8%	25.5%	21.1%	3.7%	17.7%	149,999
6124006	85558	383285	491210	133237	113726	28574	722862	1562995	1291028	227019	1084512	120,000-
100.0%	1.4%	6.4%	8.4%	2.0%	1.8%	.5%	12.8%	25.5%	20.2%	3.2%	17.9%	119,999
11907524	160885	764777	995277	233493	216317	61145	1523067	3037769	2407929	381098	2125767	90,000-
100.0%	1.3%	6.7%	8.4%	1.8%	1.8%	.6%	14.6%	25.5%	19.2%	2.8%	17.5%	89,999
16810242	215402	1122059	1404362	294347	298907	97875	2449220	4294546	3232101	463253	2938170	60,000-
100.0%	1.2%	7.3%	7.5%	1.2%	1.3%	.7%	19.2%	26.3%	16.6%	2.5%	16.3%	59,999
13361549	158647	975177	1008019	156766	175227	91924	2561811	3513726	2213931	332748	2173573	30,000-
100.0%	1.2%	8.0%	6.2%	2.1%	2.1%	.8%	21.0%	24.2%	16.5%	2.5%	15.5%	29,999
4503474	52394	361929	277272	95493	95205	34898	947828	1088982	742450	110758	696265	1-
100.0%	1.8%	6.3%	8.5%	2.7%	1.6%	.5%	12.1%	25.5%	18.0%	3.4%	19.5%	Known
370264	6721	23316	31497	9885	6039	1925	44756	94553	66651	12752	72169	Not
		the road										
_		view of	exhaust	structure	belts	wheels					signalling	test
	Other	Drivers	Fuel &	Body &	Seat	Road	Tyres	Brakes	Suspension	Steering	Lighting &	at time of
Total						System Failure	Systen					Mileage

TRL 64 PPR565

Table B2-6: Class 4 MOT test results by year of first use of vehicle (2009)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other*	
2007-2009	96663	8651	12357	3736	121407
	79.6%	7.1%	10.2%	3.1%	100.0%
2006	2273923	213113	323778	25913	2836727
	80.2%	7.5%	11.4%	.9%	100.0%
2005	2294923	227670	420650	21561	2964804
	77.4%	7.7%	14.2%	.7%	100.0%
2004	2367094	263325	566689	21341	3218449
	73.5%	8.2%	17.6%	.7%	100.0%
2003	2336227	283222	677920	21008	3318377
	70.4%	8.5%	20.4%	.6%	100.0%
2002	2300938	293044	759061	21410	3374453
	68.2%	8.7%	22.5%	.6%	100.0%
2001	2136953	269068	797993	21055	3225069
	66.3%	8.3%	24.7%	.7%	100.0%
2000	1830181	220388	794218	19609	2864396
	63.9%	7.7%	27.7%	.7%	100.0%
1999	1612561	189494	774350	18557	2594962
	62.1%	7.3%	29.8%	.7%	100.0%
1998	1374715	154361	713476	17115	2259667
	60.8%	6.8%	31.6%	.8%	100.0%
1997	1108509	119482	600965	14720	1843676
	60.1%	6.5%	32.6%	.8%	100.0%
1996	809656	82876	456664	11544	1360740
	59.5%	6.1%	33.6%	.8%	100.0%
1989-1995	1747358	164344	966214	27365	2905281
	60.1%	5.7%	33.3%	.9%	100.0%
<u><</u> 1988	444745	28769	165371	8097	646982
	68.7%	4.4%	25.6%	1.3%	100.0%
Total	22734446	2517807	8029706	253031	33534990
	67.8%	7.5%	23.9%	.8%	100.0%

Table B2-7: Class 4 MOT test results by mileage at the time of test (2009)

Mileage at		Test F	Result		Total
time of test	Pass	PRS	Fail	Other*	
Not known	71594	8519	62642	176469	319224
	22.4%	2.7%	19.6%	55.3%	100.0%
1-	3801684	320363	623097	11906	4757050
29,999	79.9%	6.7%	13.1%	.3%	100.0%
30,000-	2456830	252156	535622	6169	3250777
39,999	75.6%	7.8%	16.5%	.2%	100.0%
40,000-	2484947	281357	678609	6374	3451287
49,999	72.0%	8.2%	19.7%	.2%	100.0%
50,000-	2381729	284565	776854	6674	3449822
59,999	69.0%	8.2%	22.5%	.2%	100.0%
60,000-	2194628	270332	824631	6712	3296303
69,999	66.6%	8.2%	25.0%	.2%	100.0%
70,000-	1960023	241235	820587	6518	3028363
79,999	64.7%	8.0%	27.1%	.2%	100.0%
80,000-	1690185	205038	767548	6088	2668859
89,999	63.3%	7.7%	28.8%	.2%	100.0%
90,000-	1407450	167986	680550	5622	2261608
99,999	62.2%	7.4%	30.1%	.2%	100.0%
100,000-	1046857	125799	517568	4416	1694640
109,999	61.8%	7.4%	30.5%	.3%	100.0%
110,000-	821742	96463	420589	3575	1342369
119,999	61.2%	7.2%	31.3%	.3%	100.0%
120,000-	638310	73465	336555	2945	1051275
129,999	60.7%	7.0%	32.0%	.3%	100.0%
130,000 +	1778479	190530	984860	9573	2963442
	60.0%	6.4%	33.2%	.3%	100.0%
Total	22734458	2517808	8029712	253041	33535019
	67.8%	7.5%	23.9%	.8%	100.0%

Table B2-8: Percentage failure for Class 4 MOT test results by year of first use of vehicle by mileage at time of test (2009)

First year			Mileag	e at time	of test			Total
of use	N/K	1-29K	30-59K	60-89K	90- 119K	120- 149K	150K +	
2007-2009	-	-	-	-	-	-	-	10.2
2006	4.5	8.9	13.4	16.9	19.3	21.6	19.4	11.4
2005	8.6	10.0	15.1	18.4	20.2	22.1	22.8	14.2
2004	12.7	11.6	17.6	21.1	22.8	24.3	25.8	17.6
2003	15.7	12.8	19.3	23.1	25.1	26.5	27.9	20.4
2002	17.8	13.6	20.3	24.4	26.4	27.6	29.2	22.5
2001	21.3	15.0	21.4	26.0	28.2	29.4	30.7	24.7
2000	23.1	17.3	23.5	28.5	30.5	31.7	32.6	27.7
1999	26.2	22.5	25.0	30.0	32.1	33.0	33.7	29.8
1998	27.6	30.5	26.0	31.4	33.3	34.0	34.8	31.6
1997	27.6	32.9	27.1	32.0	34.0	34.7	35.5	32.6
1996	27.7	34.0	28.4	32.9	34.7	35.4	35.9	33.6
1989-1995	23.8	31.2	28.7	32.5	34.3	35.0	35.4	33.3
<u><</u> 1988	13.5	21.5	24.4	26.2	28.7	32.1	33.5	25.6
Total	19.6	13.1	19.6	26.8	30.5	32.5	33.6	23.9

Table B2-9: Class 4 MOT failure items by first year of use (2009)

	Total	1988	Λ	1995	1989-		1996		1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	2009	2007-		of use	year	First
16.5%	10339370	17.2%	234948	14.3%	1165514	14.7%	571451	15.3%	772983	16.0%	949339	17.1%	1074743	16.4%	1029385	17.6%	1064095	17.9%	998184	17.6%	847106	17.7%	704848	17.2%	511863	17.4%	395427	22.7%	19484		signalling	Lighting &	
3.1%	1937844	6.2%	84711	3.6%	294776	2.9%	112857	2.7%	138601	2.7%	162012	2.9%	179206	2.9%	183514	2.8%	168990	2.9%	160566	3.2%	154005	3.6%	144490	3.4%	100316	2.3%	51784	2.4%	2016			Steering	
19.7%	12348179	25.3%	345407	24.6%	2011948	23.6%	526516	22.9%	1159453	22.1%	0620181	21.0%	1319692	20.7%	1298689	19.1%	1155125	18.2%	1011347	16.3%	786915	13.5%	537113	10.9%	324994	7.2%	164374	7.5%	6397			Suspension	
26.0%	16322795	22.5%	307482	24.5%	1999448	26.0%	1010456	26.1%	1320902	26.5%	1569013	26.9%	1687602	27.1%	1698187	27.4%	1662030	25.9%	1441194	25.7%	1237702	26.2%	1043882	26.6%	790034	23.6%	534812	23.4%	20051			Brakes	
15.0%	9399483	5.4%	73158	9.4%	764748	10.1%	393623	10.7%	538946	11.2%	664478	12.0%	752857	13.1%	823850	15.4%	933188	17.5%	975614	19.9%	958195	23.1%	918412	27.5%	817634	33.5%	759403	29.6%	25377			Tyres	Syste
.7%	409473	.3%	4776	.4%	31479	.5%	17966	.5%	24703	.5%	31002	.6%	37145	.6%	38885	.7%	41340	.7%	40754	.8%	26268	.9%	86298	1.1%	32449	1.4%	86228	1.3%	1086		wheels	Road	System Failure
1.8%	1129956	3.2%	43519	3.3%	272720	3.0%	115057	2.9%	144846	2.5%	145646	1.7%	107382	1.5%	93675	1.1%	64254	.8%	44433	.7%	33084	.7%	26928	.7%	19676	.8%	17731	1.2%	1005		belts	Seat	
1.8%	1103082	5.7%	77461	4.1%	335109	3.3%	127800	2.9%	144095	2.4%	139203	1.5%	95999	1.2%	73561	.7%	41446	.5%	25129	.3%	16536	.3%	11080	.3%	8031	.3%	7256	.4%	376		structure	Body &	
7.6%	4764506	7.0%	95377	8.7%	709117	8.8%	342591	8.8%	444044	8.9%	526620	9.0%	565418	8.8%	554791	7.5%	452909	7.2%	401967	7.1%	340672	5.3%	211379	2.9%	86135	1.4%	32281	1.4%	1205		exhaust	Fuel &	
6.6%	4140414	5.9%	80134	5.7%	466749	5.8%	223657	5.9%	297506	5.9%	348226	6.1%	380368	6.3%	392826	6.7%	408101	7.0%	390758	7.2%	348146	7.6%	304073	8.4%	250957	10.6%	241126	9.1%	7787	the road	view of	Drivers	
1.3%	818271	1.4%	18752	1.5%	119685	1.4%	54843	1.4%	69817	1.3%	76240	1.3%	80885	1.4%	84939	1.2%	70418	1.3%	71656	1.3%	61100	1.1%	43970	1.1%	33189	1.4%	31774	1.2%	1003			Other	
100.0%	62713373	100.0%	1365725	100.0%	8171293	100.0%	3886236	100.0%	5055896	100.0%	5922569	100.0%	6281297	100.0%	6272302	100.0%	6061896	100.0%	5561602	100.0%	4822753	100.0%	3982473	100.0%	2975278	100.0%	2268266	100.0%	85787				Total

Table B2-10: Class 4 vehicles MOT failure items by system by mileage at time of test (2009)

Mileage					Syster	System Failure						Total
at time of	Lighting &	Steering	Suspension	Brakes	Tyres	Road	Seat	Body &	Fuel &	Drivers	Other	
test	signalling					wheels	belts	structure	exhaust	view of		
										the road		
Not	78475	15003	77773	106309	47698	2292	7123	10148	34606	25255	7392	412074
Known	19.0%	3.6%	18.9%	25.8%	11.6%	%9:	1.7%	2.5%	8.4%	6.1%	1.8%	100.0%
1-	690072	110055	769853	1099816	629286	42127	98404	93512	254088	362802	56495	4564903
29,999	15.1%	2.4%	16.9%	24.1%	21.6%	%6:	2.2%	2.0%	2.6%	7.9%	1.2%	100.0%
30,000-	2253687	385013	2475666	3828746	2734552	113815	190487	160143	1021539	1026899	170671	14361218
59,999	15.7%	2.7%	17.2%	26.7%	19.0%	%8.	1.3%	1.1%	7.1%	7.2%	1.2%	100.0%
-000'09	3118711	540056	3732304	4845495	2668971	120051	340108	315118	1505206	1204092	235955	18626067
666,68	16.7%	2.9%	20.0%	26.0%	14.3%	%9:	1.8%	1.7%	8.1%	6.5%	1.3%	100.0%
-000'06	2263200	433422	2770100	3466608	1669760	75406	254387	256017	1083295	824143	181955	13278293
119,999	17.0%	3.3%	20.9%	26.1%	12.6%	%9:	1.9%	1.9%	8.2%	6.2%	1.4%	100.0%
-20,000-	1153354	252573	1470160	1780881	795129	34846	135037	145830	531971	415222	97625	6812628
149,999	16.9%	3.7%	21.6%	26.1%	11.7%	.5%	2.0%	2.1%	7.8%	6.1%	1.4%	100.0%
150,000	781874	201722	1052329	1194951	495698	20936	104410	122317	333802	282004	68178	4658221
+	16.8%	4.3%	22.6%	25.7%	10.6%	.4%	2.2%	7.6%	7.2%	6.1%	1.5%	100.0%
Total	10339373	1937844	12348185	16322806	9399487	409473	1129956	1103085	4764507	4140417	818271	62713404
	16.5%	3.1%	19.7%	%0.92	15.0%	%2.	1.8%	1.8%	7.6%	%9'9	1.3%	100.0%

TRL

B.3 Light goods vehicles (3,000-3,500kg) roadworthiness (Class 7)

Table B3-1: Class 7 MOT test results by year of first use of vehicle (2008)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other*	
2006-2008	2782	317	666	160	3925
	70.9%	8.1%	17.0%	4.1%	100.0%
2005	61222	6510	19081	1024	87837
	69.7%	7.4%	21.7%	1.2%	100.0%
2004	61913	6426	21635	854	90828
	68.2%	7.1%	23.8%	.9%	100.0%
2003	56104	5546	21810	694	84154
	66.7%	6.6%	25.9%	.8%	100.0%
2002	53508	5015	22915	734	82172
	65.1%	6.1%	27.9%	.9%	100.0%
2001	50996	4576	24465	734	80771
	63.1%	5.7%	30.3%	.9%	100.0%
2000	41538	3414	22077	628	67657
	61.4%	5.0%	32.6%	.9%	100.0%
1999	33595	2715	19258	540	56108
	59.9%	4.8%	34.3%	1.0%	100.0%
1998	31470	2350	18548	514	52882
	59.5%	4.4%	35.1%	1.0%	100.0%
1997	25599	1825	15833	473	43730
	58.5%	4.2%	36.2%	1.1%	100.0%
1996	17971	1220	11596	345	31132
	57.7%	3.9%	37.2%	1.1%	100.0%
1995	13033	842	8660	281	22816
	57.1%	3.7%	38.0%	1.2%	100.0%
1988-1994	23600	1481	15795	725	41601
	56.7%	3.6%	38.0%	1.7%	100.0%
<u><</u> 1987	3848	257	2134	157	6396
	60.2%	4.0%	33.4%	2.5%	100.0%
Total	477179	42494	224473	7863	752009
	63.5%	5.7%	29.8%	1.0%	100.0%

Table B3-2: Class 7 MOT test results by mileage at the time of test (2008)

Mileenek		T [) IL		T-4-1
Mileage at		Test F			Total
time of test	Pass	PRS	Fail	Other*	
Not known	2628	212	2437	4868	10145
	25.9%	2.1%	24.0%	48.0%	100.0%
1-	29492	2519	9039	346	41396
29,999	71.2%	6.1%	21.8%	.8%	100.0%
30,000-	21734	2005	6792	148	30679
39,999	70.8%	6.5%	22.1%	.5%	100.0%
40,000-	26837	2578	9132	170	38717
49,999	69.3%	6.7%	23.6%	.4%	100.0%
50,000-	30761	2821	11501	194	45277
59,999	67.9%	6.2%	25.4%	.4%	100.0%
60,000-	33839	3178	13642	218	50877
69,999	66.5%	6.2%	26.8%	.4%	100.0%
70,000-	35312	3172	14977	198	53659
79,999	65.8%	5.9%	27.9%	.4%	100.0%
80,000-	35855	3306	16351	191	55703
89,999	64.4%	5.9%	29.4%	.3%	100.0%
90,000-	35017	3173	16925	214	55329
99,999	63.3%	5.7%	30.6%	.4%	100.0%
100,000-	31329	2905	15580	178	49992
109,999	62.7%	5.8%	31.2%	.4%	100.0%
110,000-	28665	2610	14797	159	46231
119,999	62.0%	5.6%	32.0%	.3%	100.0%
120,000-	26093	2278	13718	142	42231
129,999	61.8%	5.4%	32.5%	.3%	100.0%
130,000 +	139617	11738	79582	837	231774
	60.2%	5.1%	34.3%	.4%	100.0%
Total	477179	42495	224473	7863	752010
	63.5%	5.7%	29.8%	1.0%	100.0%

Table B3-3: Class 7 vehicles MOT failure items by system by first year of use (2008)

	Total	1987	Λ	1994	1988-		1995		1996		1997		1998		1999		2000		2001		2002		2003		2004		2005	2008	2006-		of use	year	First
19.6%	381161	16.9%	3462	14.4%	22664	15.1%	12860	16.6%	19179	17.0%	26107	17.3%	30405	18.3%	32262	18.8%	37050	20.4%	42363	21.6%	40157	22.9%	38261	24.1%	39278	25.6%	35761	28.7%	1352		signalling	Lighting &	
4.0%	78125	5.6%	1149	5.5%	8624	4.5%	3802	4.2%	4878	3.9%	5965	4.1%	7220	4.5%	7922	4.4%	8692	4.0%	8210	3.3%	6199	3.1%	5259	3.5%	5761	3.1%	4302	3.0%	142			Steering	
23.1%	450481	22.3%	4585	25.6%	40190	24.0%	20500	23.3%	27018	23.6%	36314	23.4%	41122	23.6%	41504	23.1%	45361	21.7%	45057	23.4%	43470	23.0%	62585	22.6%	15895	20.8%	29113	17.4%	817			Suspension	
26.1%	509009	24.6%	5048	21.7%	34193	23.1%	19702	24.8%	28752	26.5%	40885	26.6%	46810	26.1%	45883	27.8%	54733	29.5%	61106	27.5%	51118	26.3%	44105	25.2%	41113	24.6%	34408	24.5%	1153			Brakes	
7.8%	151255	4.6%	934	5.7%	8968	6.2%	5317	6.5%	7526	6.7%	10271	6.9%	12125	6.8%	11966	7.4%	14451	8.1%	16884	8.5%	15817	9.3%	15493	9.9%	16194	10.6%	14792	11.0%	517			Tyres	Syste
.3%	4991	.1%	26	.3%	397	.3%	257	.3%	294	.2%	370	.3%	442	.2%	376	.2%	446	.2%	518	.3%	475	.3%	480	.3%	454	.3%	434	.5%	22		wheels	Road	System Failure
2.6%	51487	4.2%	870	4.8%	7604	5.0%	4292	4.1%	4732	3.5%	5394	3.4%	5973	2.8%	4929	2.3%	4436	1.9%	3859	1.6%	2979	1.5%	2510	1.3%	2110	1.2%	1745	1.1%	54		belts		
4.0%	78304	8.5%	1753	10.3%	16175	9.4%	8002	8.1%	9335	6.5%	10023	5.7%	9992	4.7%	8192	2.7%	5366	1.3%	2795	1.1%	1975	1.0%	1664	1.0%	1607	1.0%	1375	1.1%	50		structure	Body &	
4.1%	79859	6.2%	1273	4.8%	7579	5.2%	4416	4.9%	5666	4.9%	7615	5.0%	8829	5.4%	9443	4.9%	9719	4.2%	8812	3.7%	6896	2.7%	4506	2.0%	3208	1.3%	1843	1.1%	54		exhaust	Fuel &	
7.3%	141462	5.8%	1196	5.8%	9083	6.0%	5135	6.1%	7031	6.0%	9301	6.2%	10885	6.5%	11453	7.0%	13739	7.6%	15679	7.7%	14301	8.6%	14399	8.9%	14545	10.2%	14217	10.6%	498	the road	view of	Drivers	
1.2%	22924	1.1%	220	1.1%	1775	1.2%	1022	1.2%	1418	1.2%	1774	1.1%	1991	1.1%	2007	1.3%	2591	1.0%	2149	1.2%	2235	1.3%	2169	1.1%	1868	1.2%	1658	1.0%	47			Other	
100.0%	1949058	100.0%	20516	100.0%	157252	100.0%	85305	100.0%	115829	100.0%	154019	100.0%	175794	100.0%	175937	100.0%	196584	100.0%	207432	100.0%	185622	100.0%	167425	100.0%	162989	100.0%	139648	100.0%	4706				Total

TRL 72 PPR565

Table B3-4: Class 7 vehicles MOT failure items by system by mileage at time of test (2008)

Total		20390	72580	100.0%	20697	100.0%	69663	100.0%	88923	100.0%	108587	100.0%	122075	100.0%	136502	100.0%	144599	100.0%	134794	100.0%	130434	100.0%	122550	100.0%	747265	100.0%	1949059 100.0%
	Other	321 1.6%	825	1.1%	497	1.0%	712	1.0%	952	1.1%	1249	1.2%	1426	1.2%	1587	1.2%	1721	1.2%	1568	1.2%	1595	1.2%	1367	1.1%	9104	1.2%	22924 1.2%
	Drivers view of the road	1301 6.4%	5654	7.8%	4274	8.4%	2980	8.6%	7500	8.4%	8853	8.2%	9791	8.0%	10503	7.7%	10864	7.5%	10040	7.4%	9189	7.0%	8624	7.0%	48889	6.5%	141462 7.3%
	Fuel & exhaust	870 4.3%	2629	3.6%	1566	3.1%	2306	3.3%	3061	3.4%	3913	3.6%	4640	3.8%	5222	3.8%	5939	4.1%	5645	4.2%	5497	4.2%	5184	4.2%	33387	4.5%	79859 4.1%
	Body & structure	1095 5.4%	4305	5.9%	1562	3.1%	2017	2.9%	2544	2.9%	3228	3.0%	3860	3.2%	4604	3.4%	2925	3.8%	4708	3.5%	4948	3.8%	5135	4.2%	34731	4.6%	78304 4.0%
	Seat belts	508 2.5%	2581	3.6%	1330	2.6%	1639	2.4%	1984	2.2%	2555	2.4%	3049	2.5%	3588	2.6%	3904	2.7%	3516	2.6%	3467	2.7%	3401	2.8%	19965	2.7%	51487 2.6%
System Failure	Road wheels	41 .2%	210	.3%	159	.3%	236	.3%	276	.3%	341	.3%	364	.3%	393	.3%	403	.3%	333	.2%	332	.3%	315	.3%	1588	.2%	4991 .3%
Syster	Tyres	1167 5.7%	6085	8.4%	5499	10.8%	7193	10.3%	8621	9.7%	10204	9.4%	10681	8.7%	11358	8.3%	11646	8.1%	10736	8.0%	9973	7.6%	9127	7.4%	48965	%9.9	151255 7.8%
	Brakes	5663 27.8%	17489	24.1%	12887	25.4%	18133	26.0%	23622	26.6%	28377	26.1%	31998	26.2%	35879	26.3%	37200	25.7%	35421	26.3%	34256	26.3%	32221	26.3%	195863	26.2%	509009 26.1%
	Suspension	4128 20.2%	16542	22.8%	11012	21.7%	14919	21.4%	19121	21.5%	23951	22.1%	27535	22.6%	31255	22.9%	33627	23.3%	31002	23.0%	30445	23.3%	28613	23.3%	178331	23.9%	450481 23.1%
	Steering	781 3.8%	3096	4.3%	1960	3.9%	2646	3.8%	3537	4.0%	4327	4.0%	4898	4.0%	5554	4.1%	5958	4.1%	5533	4.1%	5218	4.0%	4868	4.0%	29749	4.0%	78125 4.0%
	Lighting & signalling	4515 22.1%	13164	18.1%	9951	19.6%	13882	19.9%	17705	19.9%	21589	19.9%	23833	19.5%	26559	19.5%	27770	19.2%	26292	19.5%	25514	19.6%	23695	19.3%	146693	19.6%	381162 19.6%
Mileage	at time of test	Not known	1-	29,999	30,000-	39,999	40,000-	49,999	-000'09	59,999	-000'09	66,69	-000'02	79,999	-000'08	89,999	-000'06	666'66	100,000-	109,999	110,000-	119,999	120,000-	129,999	130,000 +		Total

PPR565

Table B3-5: Class 7 MOT test results by year of first use of vehicle (2009)

First year of		Test F	Result		Total
use	Pass	PRS	Fail	Other*	
2007-2009	2779	327	675	163	3944
	70.5%	8.3%	17.1%	4.1%	100.0%
2006	63715	7424	19804	1105	92048
	69.2%	8.1%	21.5%	1.2%	100.0%
2005	60192	6503	20783	788	88266
	68.2%	7.4%	23.5%	.9%	100.0%
2004	58527	6161	23281	783	88752
	65.9%	6.9%	26.2%	.9%	100.0%
2003	52437	5357	22626	720	81140
	64.6%	6.6%	27.9%	.9%	100.0%
2002	49940	4973	24153	718	79784
	62.6%	6.2%	30.3%	.9%	100.0%
2001	46825	4498	24503	691	76517
	61.2%	5.9%	32.0%	.9%	100.0%
2000	37099	3197	21221	594	62111
	59.7%	5.1%	34.2%	1.0%	100.0%
1999	28760	2441	17685	525	49411
	58.2%	4.9%	35.8%	1.1%	100.0%
1998	26091	2145	16453	463	45152
	57.8%	4.8%	36.4%	1.0%	100.0%
1997	20727	1594	13546	401	36268
	57.1%	4.4%	37.3%	1.1%	100.0%
1996	14074	982	9354	309	24719
	56.9%	4.0%	37.8%	1.3%	100.0%
1989-1995	25997	1862	17308	737	45904
	56.6%	4.1%	37.7%	1.6%	100.0%
<u><</u> 1988	4219	303	2313	152	6987
	60.4%	4.3%	33.1%	2.2%	100.0%
Total	491382	47767	233705	8149	781003
	62.9%	6.1%	29.9%	1.0%	100.0%

Table B3-6: Class 7 MOT test results by mileage at the time of test (2009)

Mileage at		Test F	Result		Total
time of test	Pass	PRS	Fail	Other*	
Not known	2768	331	2432	5255	10786
	25.7%	3.1%	22.5%	48.7%	100.0%
1-	29674	2760	8148	302	40884
29,999	72.6%	6.8%	19.9%	.7%	100.0%
30,000-	82676	8432	28430	524	120062
59,999	68.9%	7.0%	23.7%	.4%	100.0%
60,000-	107279	10828	46642	557	165306
89,999	64.9%	6.6%	28.2%	.3%	100.0%
90,000-	98408	9572	49633	545	158158
119,999	62.2%	6.1%	31.4%	.3%	100.0%
120,000-	71207	6883	39405	384	117879
149,999	60.4%	5.8%	33.4%	.3%	100.0%
150,000-	43927	4071	25604	257	73859
179,999	59.5%	5.5%	34.7%	.3%	100.0%
180,000-	24550	2193	14659	130	41532
209,999	59.1%	5.3%	35.3%	.3%	100.0%
210,000 +	30894	2697	18752	197	52540
	58.8%	5.1%	35.7%	.4%	100.0%
Total	491383	47767	233705	8151	781006
	62.9%	6.1%	29.9%	1.0%	100.0%

Table B3-7: Class 7 vehicles MOT failure items by system by first year of use (2009)

0	Total	1988	٨	1995	1989-		1996		1997		1998		1999		2000		2001		2002		2003		2004		2005		2006	2009	2007-		of use	year	First
18.7%	400508	16.0%	3690	14.0%	25741	15.4%	15369	15.5%	21931	15.7%	26573	16.5%	29282	17.0%	34944	18.6%	42365	19.8%	42381	21.0%	39849	22.1%	42336	23.5%	38529	24.9%	36133	28.2%	1385		signalling	Lighting &	
4.1%	96600	5.3%	1216	4.9%	8956	4.0%	4019	3.9%	5483	3.7%	6303	4.5%	7963	4.5%	9236	4.4%	10009	3.9%	8370	3.6%	6817	4.0%	7708	3.3%	5401	3.4%	4944	3.6%	175			Steering	
22.7%	485152	23.7%	5472	25.5%	46971	24.2%	24095	24.2%	34313	24.3%	41144	23.6%	41983	22.7%	46609	20.8%	47195	22.5%	48026	22.3%	42310	22.9%	43696	21.7%	60958	18.6%	27012	14.6%	717			Suspension	
27.5%	587778	24.2%	5604	22.3%	41075	24.3%	24231	26.5%	37563	26.4%	44668	26.6%	47270	29.2%	59953	31.9%	72496	29.8%	63693	29.0%	55077	27.2%	52070	26.7%	43813	26.7%	38811	28.6%	1404			Brakes	
7.9%	169766	4.4%	1027	5.9%	10839	6.5%	6466	6.4%	9033	6.5%	11041	6.6%	11761	7.1%	14579	7.8%	17802	8.2%	17605	8.9%	16911	9.6%	18431	10.4%	17084	11.5%	16642	11.1%	545			Tyres	Syste
.2%	5310	.2%	56	.3%	467	.2%	246	.2%	354	.2%	376	.2%	377	.2%	412	.2%	536	.2%	532	.2%	424	.3%	485	.3%	525	.3%	508	.2%	12		wheels	Road	System Failure
2.7%	57026	4.3%	998	5.0%	9152	4.5%	4470	4.2%	5893	4.0%	6733	3.5%	6141	2.8%	5702	2.0%	4529	1.8%	3825	1.6%	3009	1.4%	2678	1.3%	2128	1.2%	1712	1.1%	56		belts	Seat	(D
3.9%	83450	8.2%	1888	10.0%	18415	9.1%	9050	7.6%	10748	6.9%	11688	6.2%	10966	3.7%	7499	1.6%	3674	1.2%	2611	1.1%	2041	1.0%	1863	1.0%	1579	1.0%	1390	.8%	38		structure	Body &	
3.8%	81226	6.5%	1497	4.8%	8786	4.7%	4652	4.6%	6518	4.8%	8047	5.1%	9008	4.7%	9623	4.4%	9914	4.0%	8647	3.1%	5870	2.3%	4399	1.7%	2768	1.0%	1446	1.0%	51		exhaust	Fuel &	
7.1%	152443	5.7%	1324	5.8%	10743	5.5%	5509	5.6%	7942	6.0%	10149	6.1%	10865	6.8%	13904	7.1%	16166	7.3%	15538	7.8%	14853	8.0%	15382	9.0%	14682	10.3%	14914	9.6%	472	the road	view of	Drivers	
1.3%	27634	1.5%	353	1.5%	2840	1.5%	1487	1.4%	2030	1.4%	2317	1.3%	2378	1.4%	2811	1.1%	2588	1.2%	2581	1.3%	2501	1.1%	2150	1.1%	1746	1.2%	1791	1.2%	61			Other	
100.0%	2136843	100.0%	23125	100.0%	183985	100.0%	99594	100.0%	141808	100.0%	169039	100.0%	177994	100.0%	205272	100.0%	227274	100.0%	213809	100.0%	189662	100.0%	191198	100.0%	163864	100.0%	145303	100.0%	4916				Total

Table B3-8: Class 7 vehicles MOT failure items by system by mileage at time of test (2009)

Mileage					Syster	System Failure						Total
at time of	Lighting &	Steering	Suspension	Brakes	Tyres	Road	Seat	Body &	Fuel &	Drivers	Other	
test	signalling					wheels	belts	structure	exhaust	view of		
	777	1,	100	7	7	C	74.2	L	0,0	the road	000	
Not	4443	84/	4/75	6224	1381	28	543	11/5	898	1341	370	71975
Known	20.3%	3.9%	21.6%	28.4%	6.3%	.3%	2.5%	5.4%	4.0%	6.1%	1.5%	100.0%
1-	12312	2693	13879	16967	2062	192	2194	3287	2349	9679	925	96659
29,999	18.7%	4.1%	21.0%	25.7%	8.9%	.3%	3.3%	5.0%	3.6%	8.0%	1.4%	100.0%
-000'08	43271	8422	44386	62929	24236	263	8505	5943	6999	18734	2831	223272
59,999	19.4%	3.8%	19.9%	28.2%	10.9%	.3%	2.3%	2.7%	3.0%	8.4%	1.3%	100.0%
-000'09	75388	16345	86878	110947	35594	1176	18/6	11763	13539	20808	4899	397117
666,68	19.0%	4.1%	21.9%	27.9%	%0.6	.3%	2.5%	3.0%	3.4%	7.8%	1.2%	100.0%
-000'06	84121	19014	102809	123629	35943	1130	12338	16877	17392	32489	2260	451502
119,999	18.6%	4.2%	22.8%	27.4%	8.0%	.3%	2.7%	3.7%	3.9%	7.2%	1.3%	100.0%
-20,000-	76769	15302	68888	102603	27682	824	11011	16313	15565	25567	5092	378200
49,999	18.3%	4.0%	23.5%	27.1%	7.3%	.2%	2.9%	4.3%	4.1%	6.8%	1.3%	100.0%
-000'09'	46695	9971	60357	68527	17431	524	7355	12323	10444	16586	3436	253649
179,999	18.4%	3.9%	23.8%	27.0%	%6.9	.2%	2.9%	4.9%	4.1%	6.5%	1.4%	100.0%
-000'081	20827	2999	36410	40649	9819	312	4022	7134	6292	9423	1913	149778
209,999	18.6%	4.0%	24.3%	27.1%	%9.9	.2%	2.7%	4.8%	4.2%	6.3%	1.3%	100.0%
210,000	37181	8007	46819	55223	11775	331	4664	8635	8108	12200	2461	195404
	19.0%	4.1%	24.0%	28.3%	%0.9	.2%	2.4%	4.4%	4.1%	6.2%	1.3%	100.0%
Total	400208	00998	485152	587728	169766	5310	22029	83450	81226	152443	27634	2136843
	18.7%	4.1%	22.7%	27.5%	7.9%	.2%	2.7%	3.9%	3.8%	7.1%	1.3%	100.0%

TRL

Appendix C In-depth accident data

The prevalence of vehicles with roadworthiness defects in the UK crash population

C.1 VOSA Accident Database

Table C1-1 looks at year of manufacture for the various vehicle classes. Most of the very old vehicles are either buses or semi-trailers. A relatively large proportion of vehicles in the "Other (non-trailer)" category (mostly agricultural tractors) also appear in the oldest age group, as do a significant proportion of motorcycles (compared to the proportions of cars, HGVs and LGVs). However, for all vehicle classes, the age distributions peak in the 2001-2007 range, although the number of vehicles of unknown age is very high – 20% overall, and particularly high for motorcycles and some types of trailer.

Table C1-1: Vehicles by Year of Manufacture and Vehicle Class

Year of manufacture

Vehicle					Ye	ear of r	manufa	cture					Tota	alc
_	1964	-80	1983	L-90	1993	1-95	1996-	2000	2001	-07	Unkr	nown	100	315
class	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Car	6	0.2	121	5.3	354	15.5	616	24.5	828	31.1	572	23.4	2497	100
HGV														
(>7.5t)	6	0.3	48	2.7	159	8.9	557	29.5	1174	43.6	353	14.9	2297	100
LGV														
(<=7.5t)	5	0.9	29	4.7	56	8.8	176	27.9	334	44.2	97	13.5	697	100
M/cycle														
etc	6	1.7	27	7.2	24	5.8	75	19.6	126	32	128	33.7	386	100
P/cycle	0	0	0	0	0	0	0	0	0	0	18	100	18	100
Minibus	0	0	4	4.5	6	5.6	30	30.3	53	47.2	15	12.4	108	100
Bus/coach	22	1.5	159	10.3	205	12.1	572	32	764	31.5	253	12.5	1975	100
SPV	1	1.7	2	3.4	10	19	13	22.4	28	39.7	9	13.8	63	100
Tlr														
(drawbar)	2	1.1	4	3.4	13	12.4	23	23.6	30	25.8	44	33.7	116	100
Tlr (semi)	17	1.8	75	8.4	90	9	248	25.8	444	32.6	269	22.5	1143	100
Tlr (NFS)	0	0	1	2.7	2	5.4	2	5.4	15	24.3	29	62.2	49	100
Other				•										
(non-tlr)	7	8.6	3	1.7	8	10.3	14	15.5	47	37.9	30	25.9	109	100
Unknown	0	0	0	0	0	0	7	28	2	8	17	64	26	100
Totals	72	0.9	473	5.9	927	11.4	2333	27	3845	35.3	1834	19.5	9484	100

Table C1-2 compares the distribution of vehicle classes in the database with the distribution of vehicles where at least one defective system was discovered at the examination.

Overall, the two distributions are very similar. LGVs, HGVs and cars (in that order) are over-represented among defective vehicles, while buses/coaches and semi-trailers are under-represented.

Table C1-2: Vehicles by whether Defective and Vehicle Class

Vahiala alaas	All ve	hicles	Defectiv	ctive vehs		
Vehicle class	Num	%	Num	%		
Car	2497	26.3	1701	27.3		
HGV	2297	24.2	1569	25.2		
LGV	697	7.3	539	8.7		
Minibus	108	1.1	59	0.9		
Bus/coach	1975	20.8	1187	19.1		
M/cycle etc	386	4.1	257	4.1		
P/cycle	18	0.2	8	0.1		
SPV	63	0.7	47	0.8		
Tlr (drawbar)	116	1.2	72	1.2		
Tlr (semi)	1143	12.1	656	10.5		
Tlr (NFS)	49	0.5	37	0.6		
Other (non-tlr)	109	1.1	79	1.3		
Unknown	26	0.3	13	0.2		
Totals	9484	100.0	6224	100.0		

Table C1-3 gives more detail by showing which vehicle systems were found to be defective. There are ten systems to each vehicle, so that there are 73,500 valid system records in the database. Of these, 19,430 were defective. Note that it is possible for a vehicle to have more than one defective system.

Table C1-3: Defective Systems by System Type and Vehicle Class

					D	efective	e syster	n						
Vehicle class	Bodyw Cha		Brak	king	Ligh	ting	Steer Suspe		Transm & Ot		Whee Tyr		Tota	als
	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Car	1267	27.8	659	28.6	917	27.3	1419	40.5	967	38.9	1477	45.8	6706	34.5
HGV	1161	25.5	564	24.5	897	26.7	852	24.3	626	25.2	653	20.3	4753	24.5
LGV	446	9.8	248	10.8	328	9.8	333	9.5	248	10.0	308	9.6	1911	9.8
Minibus	35	0.8	16	0.7	24	0.7	30	0.9	21	0.8	32	1.0	158	0.8
Bus/coach	884	19.4	296	12.8	627	18.7	369	10.5	343	13.8	222	6.9	2741	14.1
M/cycle														
etc	171	3.8	149	6.5	128	3.8	224	6.4	183	7.4	185	5.7	1040	5.4
P/cycle	1	0.0	4	0.2	1	0.0	2	0.1	3	0.1	4	0.1	15	0.1
SPV	35	0.8	16	0.7	27	0.8	28	0.8	20	0.8	23	0.7	149	0.8
Tlr														
(drawbar)	46	1.0	40	1.7	41	1.2	18	0.5	7	0.3	35	1.1	187	1.0
Tlr (semi)	430	9.4	254	11.0	294	8.8	162	4.6	34	1.4	213	6.6	1387	7.1
Tlr (NFS)	32	0.7	24	1.0	22	0.7	10	0.3	2	0.1	18	0.6	108	0.6
Other														
(non-tlr)	43	0.9	30	1.3	45	1.3	47	1.3	23	0.9	47	1.5	235	1.2
Unknown	8	0.2	6	0.3	7	0.2	7	0.2	6	0.2	6	0.2	40	0.2
Totals	4559	100.0	2306	100.0	3358	100.0	3501	100.0	2483	100.0	3223	100.0	19430	100.0

Vehicle systems have been grouped in this table to save space. Comparing the various column percentages with those in the Total column, cars are over-represented among vehicles with Steering & Suspension, Transmission & Other and particularly Wheel & Tyre defects. HGVs, on the other hand, are under-represented as regards Wheel & Tyre defects, but slightly over-represented among vehicles with Bodywork & Chassis and Lighting defects. For LGVs, no one system stands out as being more likely than the others to be defective. Minibuses are under-represented as regards Braking defects, but the numbers here are rather small to be reliable. Defects in buses/coaches seem more likely to be found in the Bodywork & Chassis and Lighting systems, and less likely to affect the Steering & Suspension and Wheels & Tyres. Defects on m/cycles are more likely to affect the Braking, Steering & Suspension and particularly the Transmission & Other systems, while these vehicles are under-represented as regards Bodywork & Chassis and Lighting defects. There are too few p/cycle defects for reliable conclusions to be drawn, and SPVs are fairly uniformly represented across the defective system types. For all types of trailers, Braking defects stand out as being the most likely, followed (for drawbar and semi-trailers) by Lighting defects. Semi-trailers are also over-represented

among Bodywork & Chassis defects. The Other (non-trailer) class of vehicles is underrepresented as regards Transmission & Other defects, but numbers in this category are again quite small.

Table C1-4 is a repeat of Table C1-3, but restricted to vehicles involved in fatal and serious accidents only. The total number of defective systems here was 9,348 and these related to 2,947 defective vehicles (in fatal/serious accidents). The 19,430 defective systems seen in Table C1-3 related to 6,224 defective vehicles. The number of defective systems per defective vehicle is thus slightly higher in fatal/serious accidents than in all accidents, even though the simple presence of defects is not a predictor of involvement in more severe accidents.

The association of particular defects with particular classes of vehicle is almost identical to that seen in Table C1-3 and discussed above. There is no indication that particular types of defects are associated with more severe accidents

Table C1-5, Table C1-6 and Table C1-7 list the defect systems for motor cycles, cars and light goods vehicles by whether the defect was or was not contributory to the accident.

Table C1-4: Defective Systems by System Type and Veh. Class (Fatal & Serious Accidents Only)

					D	efective	e syste	n						
Vehicle class	Bodyw Cha		Bral	king	Ligh	ting	Steer Suspe		Transn & O		Whee Tyr		Tot	als
	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Car	601	27.6	309	28.5	416	25.8	687	39.3	444	37.3	670	43.7	3127	33.5
HGV	655	30.1	295	27.2	510	31.6	481	27.5	365	30.6	357	23.3	2663	28.5
LGV	243	11.2	120	11.1	172	10.7	184	10.5	138	11.6	155	10.1	1012	10.8
Minibus	16	0.7	6	0.6	9	0.6	14	0.8	8	0.7	16	1.0	69	0.7
Bus/coach	305	14.0	104	9.6	210	13.0	151	8.6	122	10.2	74	4.8	966	10.3
M/cycle														
etc	69	3.2	64	5.9	52	3.2	98	5.6	66	5.5	76	5.0	425	4.5
SPV	21	1.0	5	0.5	18	1.1	14	0.8	11	0.9	16	1.0	85	0.9
Tlr														
(drawbar)	21	1.0	18	1.7	20	1.2	6	0.3	4	0.3	16	1.0	85	0.9
Tlr (semi)	199	9.1	135	12.5	169	10.5	79	4.5	14	1.2	114	7.4	710	7.6
Tlr (NFS)	16	0.7	11	1.0	11	0.7	5	0.3	1	0.1	7	0.5	51	0.5
Other														
(non-tlr)	27	1.2	15	1.4	24	1.5	28	1.6	17	1.4	32	2.1	143	1.5
Unknown	3	0.1	2	0.2	3	0.2	2	0.1	1	0.1	1	0.1	12	0.1
Totals	2176	100.0	1084	100.0	1614	100.0	1749	100.0	1191	100.0	1534	100.0	9348	100.0

Table C1-5: Defective systems by system type and whether contributory (motor cycles)

Motor ovalo					Contri	butory?	·				Totals	
Motor cycle defective system	Ye	es	Lik	ely	Poss	sible	N	0	Unkr	nown	100	.ais
delective system	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Bodywork	0	0.0	0	0.0	0	0.0	4	7.7	2	11.1	6	5.9
Braking	0	0.0	1	50.0	6	20.7	11	21.2	3	16.7	21	20.8
Chassis &												
attachments	0	0.0	0	0.0	0	0.0	5	9.6	1	5.6	6	5.9
Lighting	0	0.0	0	0.0	3	10.3	7	13.5	2	11.1	12	11.9
Steering	0	0.0	0	0.0	3	10.3	2	3.8	1	5.6	6	5.9
Suspension	0	0.0	1	50.0	5	17.2	4	7.7	1	5.6	11	10.9
Transmission	0	0.0	0	0.0	2	6.9	5	9.6	1	5.6	8	7.9
Tyres	0	0.0	0	0.0	10	34.5	6	11.5	3	16.7	19	18.8
Wheels	0	0.0	0	0.0	0	0.0	5	9.6	2	11.1	7	6.9
Other	0	0.0	0	0.0	0	0.0	3	5.8	2	11.1	5	5.0
Totals	0	0.0	2	100.0	29	100.0	52	100.0	18	100.0	101	100.0

Table C1-6: Defective Systems by System Type and Whether Contributory (cars)

Car defective					Contri	butory)				Totals	
	Υe	es	Likely		Poss	Possible		0	Unkr	nown	100	.ais
system	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Bodywork	1	9.1	0	0.0	4	3.1	71	11.4	12	10.5	88	9.9
Braking	7	63.6	8	57.1	31	24.2	79	12.7	12	10.5	137	15.4
Chassis &												
attachments	0	0.0	0	0.0	1	0.8	50	8.0	9	7.9	60	6.7
Lighting	0	0.0	0	0.0	10	7.8	86	13.8	10	8.8	106	11.9
Steering	0	0.0	0	0.0	3	2.3	60	9.6	9	7.9	72	8.1
Suspension	0	0.0	0	0.0	8	6.3	66	10.6	9	7.9	83	9.3
Transmission	0	0.0	0	0.0	3	2.3	27	4.3	10	8.8	40	4.5
Tyres	2	18.2	4	28.6	52	40.6	108	17.4	20	17.5	186	20.9
Wheels	1	9.1	0	0.0	6	4.7	55	8.8	9	7.9	71	8.0
Other	0	0.0	2	14.3	10	7.8	20	3.2	14	12.3	46	5.2
Totals	11	100.0	14	100.0	128	100.0	622	100.0	114	100.0	889	100.0

Table C1-7: Defective Systems by System Type and Whether Contributory (LGVs)

LCV defeative					Contri	butory?	?				Tot	als
LGV defective	Υe	es	Likely		Poss	Possible		0	Unkr	nown	100	.ais
system	Num	%	Num	%	Num	%	Num	%	Num	%	Num	%
Bodywork	3	6.7	0	0.0	0	0.0	34	15.7	4	16.0	41	12.5
Braking	16	35.6	7	53.8	12	41.4	37	17.1	8	32.0	80	24.3
Chassis &												
attachments	5	11.1	0	0.0	0	0.0	14	6.5	0	0.0	19	5.8
Lighting	0	0.0	0	0.0	2	6.9	40	18.4	6	24.0	48	14.6
Steering	1	2.2	0	0.0	3	10.3	12	5.5	0	0.0	16	4.9
Suspension	1	2.2	1	7.7	2	6.9	24	11.1	1	4.0	29	8.8
Transmission	2	4.4	1	7.7	0	0.0	7	3.2	0	0.0	10	3.0
Tyres	1	2.2	4	30.8	5	17.2	30	13.8	3	12.0	43	13.1
Wheels	14	31.1	0	0.0	0	0.0	7	3.2	0	0.0	21	6.4
Other	2	4.4	0	0.0	5	17.2	12	5.5	3	12.0	22	6.7
Totals	45	100.0	13	100.0	29	100.0	217	100.0	25	100.0	329	100.0

Considering motor cycles (Table C1-5), it is clear that braking, suspension and tyre defects predominate among those considered which could possibly have contributed to the accident. Braking and tyre defects were also found to be common contributory failure items for cars and LGVs (Table C1-6 and Table C1-7).

There is no indication that the presence of defects is associated with increased accident severity although among defective vehicles, those involved in fatal or serious accidents tend to have more defective systems than those in slight or damage only accidents.

There is no indication that defects in particular vehicle systems are more associated with fatal or serious accidents.

However, due to the nature of the VOSA database it is not possible to base national estimates on these findings as the representativeness of the accidents examined by VOSA is not known.

C.2 Fatals Intermediate Database

The Fatals Intermediate Database was developed by TRL under contract to the DfT. Fatal accident files acquired from nearly all police forces in England and Wales were examined, and information extracted for entry into the database. Although data are no longer being added to the database, it still contains details of 11,996 fatal accidents (18,379 vehicles, 17,612 of which are not pedal cycles). The accidents in the database cover the period 1986-98, though over 90% date from 1990-95.

Key to Causation for Table C2-1 codes:

28 Tyres: Wrong pressure

29 Tyres: Deflation before impact

30 Tyres: Worn/insufficient tread

31 Defective lights/signals

32 Defective brakes

33 Other

Table C2-1: Accidents by Vehicle Type and First Causation Factor

Vehicle			Causati	on code			Total
type	28	29	30	31	32	33	Total
Moped		2					2
M/cycle		6	4	5	8	12	35
M/c combination						2	2
Invalid tricycle						1	1
3-wheel car						1	1
Taxi						1	1
Car		32	10	1	13	27	83
Minibus etc		2	1				3
PSV						2	2
LGV		6			4	9	19
HGV		2	1	2	27	20	52
OMV				3	3	5	11
Totals	0	50	16	11	55	80	212

Table C2-1 is based on the Causation Coding framework developed by TRL. It only gives information about the vehicle which was considered to be primarily to blame for the accident. The Fatals IDB also contains defect information at individual vehicle level, including whether or not the defect was likely to have been contributory. Defects are considered under a number of headings: Lights, Tyres, Steering, Suspension, Brakes and general Mechanical or Electrical failure. This is summarised in Table C2-2. In this table, the numbers in the "Contributory" column refer to vehicles where at least one defect was considered contributory. Other defects may have been present and may or may not also have been contributory.

Among the 118 M/cycles with contributory defects, 48 were tyre defects only, 21 were brake defects only, 17 were tyre with something else and 17 were brakes with something else. Four were tyres and brakes only.

Among the 383 cars with contributory defects, 216 were tyre defects only, 47 were brake defects only, 45 were tyre with something else and 44 were brakes with something else. 19 were tyres and brakes only.

Among the 35 LGVs with contributory defects, 18 were tyre defects only, 7 were brake defects only and 3 were tyres and brakes only.

Among the 72 HGVs with contributory defects, 9 were tyre defects only, 36 were brake defects only, 5 were tyre with something else and 7 were brakes with something else. 3 were tyres and brakes only.

Table C2-2: Vehicles by Vehicle Type and Presence/Contribution of Defects

Vehicle		Def	ects		Vehic	les in	Contrib/
	Pres	sent	Contri	butory	data	base	Present
type	No.	%	No.	%	No.	%	%
Moped	5	0.3	3	0.5	77	0.4	60.0
M/scooter	2	0.1	0	0.0	21	0.1	0.0
M/cycle	248	12.6	118	18.3	1786	10.1	47.6
M/c combination	3	0.2	2	0.3	8	0.0	66.7
Invalid trike	2	0.1	1	0.2	10	0.1	50.0
3-wheel car	4	0.2	2	0.3	33	0.2	50.0
Taxi	12	0.6	1	0.2	86	0.5	8.3
Car	1285	65.3	383	59.4	11516	65.4	29.8
Minibus etc	19	1.0	5	0.8	138	0.8	26.3
Bus/coach	18	0.9	3	0.5	440	2.5	16.7
LGV	139	7.1	35	5.4	1171	6.6	25.2
HGV	189	9.6	72	11.2	2083	11.8	38.1
OMV	38	1.9	18	2.8	224	1.3	47.4
ONMV	4	0.2	2	0.3	11	0.1	50.0
Goods >3.5 <7.5t	1	0.1	0	0.0	1	0.0	0.0
Goods >7.5t	0	0.0	0	0.0	7	0.0	-
Totals	1969	100.0	645	100.0	17612	100.0	32.8

C.3 On The Spot database

In total 4,744 accidents which were investigated by the OTS project (Phase 1, 2 and 3 inclusive, database OTS3n). These accidents involved 8,799 vehicles.

The following table gives a breakdown of these vehicles by vehicle type.

Vehicle Type Number of vehicles % Car 6,660 75.7 Light goods <3.5 tonnes 512 5.8 457 5.2 Heavy Goods 132 1.5 Bus Motorcycle 476 5.4 Pedal Cycle 183 2.1 Pedestrian 303 3.4 Other (e.g. horse and cart 21 0.2 Unknown, because untraced 55 0.6 Total 8,799 100.0

Table C3-1: Number of vehicles in OTS

The sample of vehicles for consideration for these analyses is restricted to:

- Cars;
- Light goods Vehicles (tonnes <3.5); and
- Motorcycles.

Therefore a total of 7,648 vehicles were considered for these analyses, which were involved in a total of 4,621 accidents.

Of these 7,648 vehicles involved, 333 were reported to have had a defect at the time of the accident (4%), of these 194 were reported by the OTS investigators to have had at least one defect that may have been detectable in an MOT prior to the collision (2.5%). A further 82 vehicles had defects which may have occurred just prior to the collision or could have been detected for sometime during an MOT, e.g. the majority of these 82 vehicles suffered a rapid tyre deflation prior to the collision. This deflation could have been a result of a tyre defect (e.g. perishing of the side wall) or perhaps the result of nail puncturing the tyre, as it is not possible to discern if a recent MOT would have been able to detect these defects, it has been decided to classify these defects as non MOT failures.

Of the 194 vehicles with a MOT defect which may have been detectable for some time, 80 were noted to have been contributory to the cause of the accident (Table C3-2).

Defect group	C	Cars		V	Motor	cycle	Total		
	No.	%	No.	%	No.	%	No.	%	
Tyre	28	43.8	3	37.5	1	12.5	32	40.0	
Tyre and lights	2	3.1	0	0.0	1	12.5	3	3.8	
Lights	2	3.1	0	0.0	2	25.0	4	5.0	
Brakes	20	31.3	3	37.5	3	37.5	26	32.5	
Steering	8	12.5	0	0.0	0	0.0	8	10.0	
Other	4	6.3	2	25.0	1	12.5	7	8.8	
Total	64	100.0	8	100.0	8	100.0	80	100.0	

Table C3-2: MOT defects which were contributory

Of the 82 temporary failures, 68 were noted to have contributed to the cause of the accident.

Table C3-3: Temporary defects which were contributory

Defect group	Cars		LC	CV	Motor	cycle	Total		
	No.	%	No.	%	No.	%	No.	%	
Tyre	46	80.7	5	71.4	4	100.0	55	80.9	
Lights	1	1.8	0	0.0	0	0.0	1	1.5	
Brakes	4	7.0	1	14.3	0	0.0	5	7.4	
Steering	4	7.0	0	0.0	0	0.0	4	5.9	
Other	2	3.5	1	14.3	0	0.0	3	4.4	
Total	57	100.0	7	100.0	4	100.0	68	100.0	

The following provides an overview of the distribution of vehicle defects that would have been detected in an MOT, compared to the total vehicle population contained within the OTS database.

Table C3-4: Distribution of MOT defects compared with all OTS vehicles by injury severity

				Police	e severity		
		Fatal	Serious	Slight	Non Injury	Not Known	Total
	MOT defect	4	10	01		KIIOWII	162
	MOT defect	4	10	81	66	1	162
Cars	Total	130	631	3151	2680	68	6660
	% with MOT defects	3.1	1.6	2.6	2.5	1.5	2.4
	MOT defect	1	1	7	7	0	16
LCV	Total	19	56	245	190	2	512
	% with MOT defects	5.3	1.8	2.9	3.7	0.0	3.1
	MOT defect	3	5	8	0	0	16
Motorcycles	Total	35	137	262	41	1	476
Motorcycles	% with MOT defects	8.6	3.6	3.1	0.0	0.0	3.4
	MOT defect	8	16	96	73	1	194
Total	Total	184	824	3658	2911	71	7648
10001	% with MOT defects	4.3	1.9	2.6	2.5	1.4	2.5

Due to the low number of vehicles which were reported to have had a defect that would have been detected in an MOT, it is not possible to discern if the presence of an MOT defect would have had a significant influence on the overall severity of an accident.

Table C3-5: Distribution of MOT defects compared with all OTS vehicles by their age

			Age	of vehicl	e at time of	accide	nt (years)	
		< 3	3 to 6	7 to 9	10 to 14	15+	Not	Total
							Known	
	MOT defect	14	23	34	63	22	6	162
Cars	Total	1250	1866	1326	1458	323	437	6660
Gais	% with MOT defects	1.1	1.2	2.6	4.3	6.8	1.4	2.4
	MOT defect	3	6	2	4	0	1	16
LCV	Total	154	192	50	50	14	52	512
	% with MOT defects	1.9	3.1	4.0	8.0	0.0	1.9	3.1
	MOT defect	5	4	2	3	1	1	16
Motorcycles	Total	157	145	62	60	32	20	476
Tiotorcycles	% with MOT defects	3.2	2.8	3.2	5.0	3.1	5.0	3.4
	MOT defect	22	33	38	70	23	8	194
Total	Total	1561	2203	1438	1568	369	509	7648
	% with MOT defects	1.4	1.5	2.6	4.5	6.2	1.6	2.5

The percentage of vehicles which were reported to have had a defect that would have been detectable in an MOT appears to generally increase with the age of the vehicle at the time of the accident for all vehicle types.

Table C3-6: Distribution of MOT defects compared with all OTS vehicles by their mileage

			Mileage	of vehicle a	it time of	accident	
						Not	
		<30K	30-59K	60-89K	90K+	known	Total
	MOT defect	13	20	36	46	47	162
Cars	Total	728	777	792	980	3383	6660
Cars	% with MOT defects	1.8	2.6	4.5	4.7	1.4	2.4
	MOT defect	2	0	4	6	4	16
LCV	Total	51	44	50	81	286	512
	% with MOT defects	3.9	0.0	8.0	7.4	1.4	3.1
	MOT defect	10	0	0	1	5	16
Motorcycles	Total	223	40	9	6	198	476
Motorcycles	% with MOT defects	4.5	0.0	0.0	16.7	2.5	3.4
	MOT defect	25	20	40	53	56	194
Total	Total	1002	861	851	1067	3867	7648
	% with MOT defects	2.5	2.3	4.7	5.0	1.4	2.5

The percentage of vehicles which were reported to have had a defect that would have been detectable in an MOT appears to generally increase with the mileage of the vehicle at the time of the accident for all vehicle types.

Appendix D Reported accidents, vehicle users and pedestrian casualties: by combination of vehicles

Table D-1: Reported accidents, vehicle users and pedestrian casualties: by combination of vehicles (2009)

Accidents involving	Single	Two ve	ehicle acc	cidents		or more v		Total
vehicle A		Veh A	Veh B	All	Veh A	Other Vehs	All	
Accidents involving Motorcycle 50cc & under	728	-	-	2,624	-	-	187	3,539
User casualties of which: killed seriously injured	612 2 144	2,549 9 400	249 0 17	2,798 9 417	176 5 27	175 5 27	351 10 54	3,761 21 615
Pedestrians hit by m/cs	171	7	0	7	0	0	0	178
of which: killed seriously injured	0 29	0 0	0 0	0 0	0 0	0 0	0 0	0 29
Accidents involving Motorcycle over 50cc	3,877	-	-	12,442	-	-	1,254	17,573
User casualties of which: killed seriously injured	3,560 121 1,244	12,504 242 3,101	1,377 8 105	13,881 250 3,206	1,302 93 434	1,245 64 354	2,547 157 788	19,988 528 5,238
Pedestrians hit by m/cs	748	44	7	51	7	7	14	813
of which: killed seriously injured	7 142	2 8	0 0	2 8	0 2	0 2	0 4	9 154
Accidents involving Cars	37,897	-	-	91,174	-	-	16,404	145,475
User casualties of which: killed seriously injured	24,623 429 3,361	92,836 460 5,063	32,267 253 5,258	125,103 713 10,321	25,953 170 1,629	72 503 36	29,362 242 2,132	179,088 1,384 15,814
Pedestrians hit by cars	20,611	1,185	166	1,351	220	4	256	22,218
of which: killed seriously injured	299 4,185	41 283	6 38	47 321	13 60	11 3,409	17 71	363 4,577
Accidents involving LGVs	1,788	-	-	8,047	-	-	2,614	12,449
User casualties of which: killed seriously injured	685 10 103	2,948 18 217	7,613 58 701	10,561 76 918	1,110 8 61	8 59 23	2,179 16 120	13,425 102 1,141
Pedestrians hit by LGVs	1,261	89	100	189	25	2	48	1,498
of which: killed seriously injured	17 251	3 19	1 21	4 40	2 7	6 1,069	4 13	25 304
All accidents	50,296	-		96,631	-	-	16,627	163,554
User casualties of which: killed seriously injured	33,909 586 5,405	-	- - -	131,472 841 11,383	-	- - -	29,878 295 2,357	195,259 1,722 19,145
Pedestrians hit by cars	25,174	-	-	1,450	-	-	263	26,887
of which: killed seriously injured	426 5,137	- -	- -	55 335	- -	-	19 73	500 5,545

 $^{^{4}}$ Casualties in accidents with three or more vehicles have been estimated based on a scaling technique

TRL 88 PPR565

-

Table D-2: Table 23c reproduced from RRCGB (2009)

 ${\bf 23c\ Reported\ accidents, vehicle\ user\ and\ pedestrian\ casualties: by\ combination\ of\ vehicles: all\ areas\ ^1:\ 2009}$

	Single	vehicle	vehicle Two vehicle accidents by vehicle type B						All accidents	A1 accidents			
Vehicle A	No pedes- trian	With pedes- trian	Pedal cycle	M'cycle 50cc & under	M'cycle over 50cc	Car	Bus or coach	Light goods vehicle	Heavy goods vehicle	Any ² other vehicle	All two ³ vehicle accidents	with three or more vehicles	with vehs of type `A
Pedal cycle													
Accidents involving	458	271	79	55	212	14,008	408	911	271	176	16,123	517	17,369
User casualties	464	77	104	44	183	13,897	383	905	268	172	15,959	564	17,064
of which: killed	6	1	0	0	3	51	4	7	18	2	85	12	104
serio usly injured	177	14	28	8	34	1,937	56	122	69	28	2,282	133	2,606
Pedestrians hit by cycles	0	275	3	0	0	10	2	0	1	1	17	0	292
of which: killed	0	0	0	0	0	0	0	0	0	0	0	0	(
serio usly injured	0	64	0	0	0	0	1	0	0	1	2	0	66
Motorcycle 50cc and under	r												
Accidents involving	561	167	55	48	41	2,233	31	139	37	37	2,624	187	3,539
User casualties	571	41	21	63	27	2,198	27	138	37	35	2,549	176	3,33
of which: killed	2	0	0	0	0	7	0	1	1	0	9	5	16
serio usly injured	139	5	2	9	0	343	3	27	9	7	400	27	57
Ped'ns hit by m/cs to 50cc	0	171	0	2	0	2	0	0	0	3	7	0	178
of which: killed	0	0	0	0	0	0	0	0	0	0	0	0	(
serio usly injured	0	29	0	0	0	0	0	0	0	0	0	0	29
Motorcycle over 50cc													
Accidents involving	3,145	732	212	41	208	10,599	136	822	236	186	12,442	1,254	17,573
User casualties	3,321	239	105	25	294	10,693	130	827	243	185	12,504	1,302	17,366
of which: killed	120	1	1	0	11	174	2	23	21	10	242	93	456
serio usly injured	1,208	36	12	3	77	2,658	32	194	75	50	3,101	434	4,779
Ped'ns hit by m/cs +50cc	0	748	0	0	0	34	2	2	1	5	44	7	799
of which: killed	0	7	0	0	0	0	0	0	1	1	2	0	9
serio usly injured	0	142	0	0	0	8	0	0	0	0	8	2	152
Car													
Accidents involving	17,926	19,971	14,008	2,233	10,599	51,480	2,314	5,346	3,561	1,613	91,174	16,404	145,475
User casualties	24,276	347	365	161	1,093	78,799	1,399	5,397	4,220	1,379	92,836	25,953	143,412
of which: killed	428	1	0	0	4	322	18	27	79	10	460	170	1,059
serio usly injured	3,330	31	17	5	64	4,099	88	332	352	106	5,063	1,629	10,053
Pedestrians hit by cars	0	20,611	18	0	7	883	100	84	43	48	1,185	220	22,016
of which: killed	0	299	0	0	0	34	1	1	4	1	41	13	353
serio usly injured	0	4,185	4	0	0	205	33	18	12	11	283	60	4,528
		,											
Bus or coach Accidents involving	2,623	1,319	408	31	136	2,314	77	191	83	74	3,315	465	7,722
User casualties	3,120	65	45	10	17	2,161	181	223	106	93	2,838	294	6,317
of which: killed	7	0	0	0	0	5	0	0	0	1	6	1	14
serio usly injured	224	4	2	0	1	81	6	11	8	7	116	12	356
Pedestrians hit by buses	0	1,349	4	0	0	24	2	3	0	1	34	4	1,387
of which: killed	0	36	2	0	0	0	1	0	0	0	3	1	40
serio usly injured	0	277	0	0	0	5	1	1	0	0	7	1	285
Light goods vehicle													
Accidents involving	566	1,222	911	139	822	5,346	191	289	261	88	8,047	2,614	12,449
User casualties	677	. 8	19	4	32	2,116	78	377	274	48	2,948	1,110	4,743
of which: killed	10	0	0	0	0	6	2	4	6	0	18	8	36
serio usly injured	102	1	0	0	1	118	6	31	49	12	217	61	38
Pedestrians hit by LGVs	0	1,261	1	0	0	53	7	17	9	2	89	25	1,375
of which: killed	0	17	0	0	0	2	0	1	0	0	3	2	22
serio usly injured	0	251	0	0	0	15	2	1	1	0	19	7	277
* *													
Heavy goods vehicle Accidents involving	382	372	271	37	236	3,561	83	261	184	89	4,723	1,536	7,013
User casualties	418	10	6	1	7	446	21	62	219	27	790	301	1,519
of which: killed	4 16	0	1	0	0	0	0	02	6	1	8	2	1,5 15
serio usly injured	67	1	1	0	0	24	1	6	38	1	71	36	179
Pedestrians hit by HGVs	0	387	0	0	0	27	2	9	8	4	50	7	444
of which: killed	0	58	0	0	0	3	0	0	1	0	4	3	65
serio usly injured	0	111	0	0	0	8	2	1	2	0	13	3	127
	Ü		,	Ü	,	,	_		_	Ü	~	Ü	
Any other vehicle A ²		0.47	470	0-	40.0	4040	٠.	00	00		0044	0.00	0.50
Accidents involving	224	347	176	37	186	1,613	74	88	89	77	2,341	619	3,53
User casualties	266	9	5	4	18	756	33	61	75	95	1,048	178	1,50
of which: killed	6	0	0	0	1	10	1	0	1	0	13	4	23
seriously injured	65	1	0	1		97	3	9	12	6	133	25	224
Ped'ns hit by these vehs	0	362	0	0	0	16	1	2	1	4	24	0	386
of which: killed seriously injured	0	9 76	0	0	0	1	0	0	1 0	0	2	0	1 79
senousiy irijureu	0	70	U	0	U		U	1	U	0	3	0	78
All vehicles ³													
Accidents involving	25,885	24,411	16,123	2,624	12,442	91,174	3,315	8,047	4,723	2,341	96,631	16,627	163,554
All vehicle user casualties	33,113	796	16,525	2,798		125,103	4,909	10,561	6,013	2,987	131,472	29,878	195,259
of which: killed	583	3	87	9	250	713	33	76	134	37	841	295	1,72
serio usly injured	5,312	93	2,316	417	3,206	10,321	305	918	645	344	11,383	2,357	19,148
Pedestrian casualties	0	25,174	40	7	51	1,351	148	189	105	88	1,450	263	26,887
of which: killed	0	426	2	0	2	47	4	4	10	4	55	19	500
serio usly injured	0	5,137	6	0	8	321	45	40	26	15	335	73	5,545

¹Includes cases where area was not reported.
2 Includes other motor and non-motor vehicles.

Appendix E MOT Scheme Database Normal tests only (2009)

Table E-1: Class 1 MOT test (initial and retests) result by vehicle class (2009)

Toot Type		Test F	Result		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	169,107	21,629	49,076	1,817	241,629
	70.0%	9.0%	20.3%	0.8%	100.0%
Full retest (F)	3,798	129	256	99	4,282
Full retest (F)	88.7%	3.0%	6.0%	2.3%	100.0%
Partial retest (minor	429	0	1	1	431
items) (PM)	99.5%	.0%	.2%	0.2%	100.0%
Partial retest repaired at	18,762	12	13	16	18,803
VRS (PR)	99.8%	.1%	.1%	0.1%	100.0%
Partial Retest left VTS	18,567	56	125	23	18,771
(PL)	98.9%	.3%	.7%	0.1%	100.0%
Refusal to test (RF)	0	0	0	4	4
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	210,663	21,826	49,471	1,960	283,920
Total	74.2%	7.7%	17.4%	0.7%	100.0%

Table E-2: Class 2 MOT test (initial and retests) result by vehicle class (2009)

Tost Type		Test F	Result		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	581,181	55,130	78,413	4,289	719,013
Normal MOT Test (N)	80.8%	7.7%	10.9%	.6%	100.0%
Full retest (F)	5,842	142	290	167	6,441
	90.7%	2.2%	4.5%	2.6%	100.0%
Partial retest (minor	1,221	1	0	2	1,224
items) (PM)	99.8%	.1%	.0%	.2%	100.0%
Partial retest repaired at	30,753	21	17	23	30,814
VRS (PR)	99.8%	.1%	.1%	.1%	100.0%
Partial Retest left VTS	31,612	69	124	28	31,833
(PL)	99.3%	.2%	.4%	0.1%	100.0%
Defusal to test (DE)	0	0	0	2	2
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	650,609	55,363	78,844	4,511	789,327
Total	82.4	7.0	10.0	0.6	100

Table E-3: Class 3 MOT test (initial and retests) result by vehicle class (2009)

Took Tymo		Test F	Result		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	8,713	931	2,745	262	12,651
	68.9%	7.4%	21.7%	2.1%	100.0%
Full retest (F)	162	5	5	4	176
	92.0%	2.8%	2.8%	2.3%	100.0%
Partial retest (minor	51	0	0	0	51
items) (PM)	100.0%	.0%	.0%	0.0%	100.0%
Partial retest repaired at	849	1	0	2	852
VRS (PR)	99.6%	.1%	.0%	0.2%	100.0%
Partial Retest left VTS	1,429	5	10	3	1,447
(PL)	98.8%	.3%	.7%	0.2%	100.0%
Defusal to test (DE)	0	0	0	0	0
Refusal to test (RF)	.0%	.0%	.0%	.0%	.0%
Total	11,204	942	2760	271	15,177
lotai	73.8	6.2	18.2	1.8	100

Table E-4: Class 4 MOT test (initial and retests) result by vehicle class (2009)

Toot Type		Test R	esult		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Tost (N)	15,344,998	2,506,899	7,986,125	224,503	26,062,525
Normal MOT Test (N)	58.9%	9.6%	30.6%	0.9%	100.0%
Full retest (F)	198,261	5,644	20,143	17,925	241,973
ruii retest (r)	81.9%	2.3%	8.3%	7.4%	100.0%
Partial retest (minor	129,832	20	20	67	129,939
items) (PM)	99.9%	.0%	.0%	0.1%	100.0%
Partial retest repaired at	3,909,898	1,398	3,121	3,315	3,917,732
VRS (PR)	99.8%	.0%	.1%	0.1%	100.0%
Partial Retest left VTS	3,151,469	3,847	20,303	6,808	3,182,427
(PL)	99.0%	.1%	.6%	0.2%	100.0%
Defusal to test (DE)	0	0	0	423	423
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	22,734,458	2,517,808	8,029,712	253,041	33,535,019
TOLAT	67.8%	7.5%	23.9%	0.8%	100.0%

Table E-5: Class 5 MOT test (initial and retests) result by vehicle class (2009)

Took Time		Test F	Result		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	32,481	3,248	13,985	862	50,576
Normal Mor Test (N)	64.2%	6.4%	27.7%	1.7%	100.0%
Full mate at (F)	754	13	122	52	941
Full retest (F)	80.1%	1.4%	13.0%	5.5%	100.0%
Partial retest (minor	217	0	0	1	218
items) (PM)	99.5%	.0%	.0%	0.5%	100.0%
Partial retest repaired at	5,002	5	13	4	5,024
VRS (PR)	99.6%	.1%	.3%	0.1%	100.0%
Partial Retest left VTS	7,021	16	143	29	7,209
(PL)	97.4%	.2%	2.0%	0.4%	100.0%
Defusal to test (DE)	0	0	0	2	2
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	45,475	3,282	14,263	950	63,970
Total	71.1	5.1	22.3	1.5	100

Table E-6: Class 7 MOT test (initial and retests) result by vehicle class (2009)

Took Time		Test F	Result		Total
Test Type	Pass	PRS	Fail	Other	
Normal MOT Test (N)	277,740	47,211	230,549	6,999	562,499
	49.4%	8.4%	41.0%	1.2%	100.0%
Full retest (F)	9,441	296	1,363	547	11,647
	81.1%	2.5%	11.7%	4.7%	100.0%
Partial retest (minor	2,173	0	0	3	2,176
items) (PM)	99.9%	.0%	.0%	0.1%	100.0%
Partial retest repaired at	78,988	49	175	129	79,341
VRS (PR)	99.6%	.1%	.2%	0.2%	100.0%
Partial Retest left VTS	123,041	211	1618	464	125,334
(PL)	98.2%	.2%	1.3%	0.4%	100.0%
Defugal to test (DE)	0	0	0	9	9
Refusal to test (RF)	.0%	.0%	.0%	100.0%	100.0%
Total	491,383	47,767	233,705	8151	781,006

Table E-7: Class 1 Normal (initial) MOT test results by year of first use of vehicle (2009)

First year of	Norma	al MOT Test Res	ult – Class 1 Ve	ehicles	Total
use	Pass	PRS	Fail	Other*	
2007-2009	963	142	284	115	1504
	64.0%	9.4%	18.9%	7.6%	100.0%
2006	18838	2718	5440	246	27242
	69.2%	10.0%	20.0%	.9%	100.0%
2005	18739	2494	5424	175	26832
	69.8%	9.3%	20.2%	.7%	100.0%
2004	16667	2195	5336	146	24344
	68.5%	9.0%	21.9%	.6%	100.0%
2003	16880	2222	5540	172	24814
	68.0%	9.0%	22.3%	.7%	100.0%
2002	14701	1940	5010	164	21815
	67.4%	8.9%	23.0%	.8%	100.0%
2001	14357	1907	5024	150	21438
	67.0%	8.9%	23.4%	.7%	100.0%
2000	11261	1531	4088	100	16980
	66.3%	9.0%	24.1%	.6%	100.0%
1999	7342	1019	2586	71	11018
	66.6%	9.2%	23.5%	.6%	100.0%
1998	4356	575	1476	33	6440
	67.6%	8.9%	22.9%	.5%	100.0%
1997	2770	370	849	27	4016
	69.0%	9.2%	21.1%	.7%	100.0%
1996	2183	312	591	24	3110
	70.2%	10.0%	19.0%	.8%	100.0%
1989-1995	9140	1422	2933	92	13587
	67.3%	10.5%	21.6%	.7%	100.0%
<u><</u> 1988	30906	2782	4495	302	38485
	80.3%	7.2%	11.7%	.8%	100.0%
Total	169103	21629	49076	1817	241625
	70.0%	9.0%	20.3%	.8%	100.0%

Table E-8: Class 2 Normal (initial) MOT test results by year of first use of vehicle (2009)

First year of	Norma	I MOT Test Res	ult - Class 2 Ve	ehicles	Total
use	Pass	PRS	Fail	Other*	
2007-2009	1007	72	82	109	1270
	79.3%	5.7%	6.5%	8.6%	100.0%
2006	43388	3901	3733	392	51414
	84.4%	7.6%	7.3%	.8%	100.0%
2005	44730	3847	4047	266	52890
	84.6%	7.3%	7.7%	.5%	100.0%
2004	43064	3742	4297	302	51405
	83.8%	7.3%	8.4%	.6%	100.0%
2003	44121	3945	4807	288	53161
	83.0%	7.4%	9.0%	.5%	100.0%
2002	43998	3971	5204	256	53429
	82.3%	7.4%	9.7%	.5%	100.0%
2001	40748	3715	5256	253	49972
	81.5%	7.4%	10.5%	.5%	100.0%
2000	39445	3893	6006	292	49636
	79.5%	7.8%	12.1%	.6%	100.0%
1999	40409	4061	6426	264	51160
	79.0%	7.9%	12.6%	.5%	100.0%
1998	33812	3537	5814	236	43399
	77.9%	8.1%	13.4%	.5%	100.0%
1997	27401	2873	5015	197	35486
	77.2%	8.1%	14.1%	.6%	100.0%
1996	17710	2003	3308	140	23161
	76.5%	8.6%	14.3%	.6%	100.0%
1989-1995	70243	7582	14318	552	92695
	75.8%	8.2%	15.4%	.6%	100.0%
<u><</u> 1988	91101	7987	10100	742	109930
	82.9%	7.3%	9.2%	.7%	100.0%
Total	581177	55129	78413	4289	719008
	80.8%	7.7%	10.9%	.6%	100.0%

Table E-9: Class 4 Normal (initial) MOT test results by year of first use of vehicle (2009)

First year of	Norma	I MOT Test Res	ult – Class 4 Ve	hicles	Total
use	Pass	PRS	Fail	Other*	
2007-2009	85291	8632	12325	3703	109951
	77.6%	7.9%	11.2%	3.4%	100.0%
2006	1961949	212688	322999	25103	2522739
	77.8%	8.4%	12.8%	1.0%	100.0%
2005	1888337	227302	419798	20481	2555918
	73.9%	8.9%	16.4%	.8%	100.0%
2004	1820305	262761	565272	19795	2668133
	68.2%	9.8%	21.2%	.7%	100.0%
2003	1683827	282508	675978	19084	2661397
	63.3%	10.6%	25.4%	.7%	100.0%
2002	1573560	292179	756605	19022	2641366
	59.6%	11.1%	28.6%	.7%	100.0%
2001	1378563	268138	794726	18367	2459794
	56.0%	10.9%	32.3%	.7%	100.0%
2000	1088464	219253	789860	16682	2114259
	51.5%	10.4%	37.4%	.8%	100.0%
1999	901283	188356	769175	15410	1874224
	48.1%	10.0%	41.0%	.8%	100.0%
1998	734759	153249	708197	14211	1610416
	45.6%	9.5%	44.0%	.9%	100.0%
1997	578446	118519	596203	12248	1305416
	44.3%	9.1%	45.7%	.9%	100.0%
1996	413985	82158	452908	9605	958656
	43.2%	8.6%	47.2%	1.0%	100.0%
1989-1995	929511	162764	958514	23455	2074244
	44.8%	7.8%	46.2%	1.1%	100.0%
<u><</u> 1988	306712	28391	163559	7335	505997
	60.6%	5.6%	32.3%	1.4%	100.0%
Total	15344992	2506898	7986119	224501	26062510
	58.9%	9.6%	30.6%	.9%	100.0%

Table E-10: Class 7 Normal (initial) MOT test results by year of first use of vehicle (2009)

First year of	Norma	I MOT Test Res	ult – Class 7 Ve	hicles	Total
use	Pass	PRS	Fail	Other*	
2007-2009	2175	327	672	160	3334
	65.2%	9.8%	20.2%	4.8%	100.0%
2006	44714	7378	19633	1031	72756
	61.5%	10.1%	27.0%	1.4%	100.0%
2005	40258	6475	20612	710	68055
	59.2%	9.5%	30.3%	1.0%	100.0%
2004	36392	6119	23037	693	66241
	54.9%	9.2%	34.8%	1.0%	100.0%
2003	30985	5308	22377	603	59273
	52.3%	9.0%	37.8%	1.0%	100.0%
2002	27218	4923	23872	604	56617
	48.1%	8.7%	42.2%	1.1%	100.0%
2001	24019	4434	24179	584	53216
	45.1%	8.3%	45.4%	1.1%	100.0%
2000	17805	3140	20879	470	42294
	42.1%	7.4%	49.4%	1.1%	100.0%
1999	13094	2390	17399	434	33317
	39.3%	7.2%	52.2%	1.3%	100.0%
1998	11656	2109	16184	374	30323
	38.4%	7.0%	53.4%	1.2%	100.0%
1997	9094	1547	13312	325	24278
	37.5%	6.4%	54.8%	1.3%	100.0%
1996	6136	951	9169	247	16503
	37.2%	5.8%	55.6%	1.5%	100.0%
1989-1995	11828	1818	16968	624	31238
	37.9%	5.8%	54.3%	2.0%	100.0%
<u><</u> 1988	2365	292	2256	140	5053
	46.8%	5.8%	44.6%	2.8%	100.0%
Total	277739	47211	230549	6999	562498
	49.4%	8.4%	41.0%	1.2%	100.0%

Table E-11: Number and rate of Initial MOT failures by Vehicle Class and first year of vehicle use (2009)

First year of	Number 8	& rate of Initial	failures by Veh	icle Class	Total (incl.
use	1	2	4	7	Class 3 & 5)
2007-2009	426	154	20,957	999	24,372
	30.7%	13.3%	19.7%	31.5%	20.0%
2006	8,158	7,634	535,687	27,011	579,673
	30.2%	15.0%	21.4%	37.7%	21.9%
2005	7,918	7,894	647,100	27,087	691,539
	29.7%	15.0%	25.5%	40.2%	25.7%
2004	7,531	8,039	828,033	29,156	874,350
	31.1%	15.7%	31.3%	44.5%	31.3%
2003	7,762	8,752	958,486	27,685	1,004,332
	31.5%	16.6%	36.3%	47.2%	36.1%
2002	6,950	9,175	1,048,784	28,795	1,095,372
	32.1%	17.3%	40.0%	51.4%	39.7%
2001	6,931	8,971	1,062,864	28,613	1,108,779
	32.6%	18.0%	43.5%	54.4%	43.2%
2000	5,619	9,899	1,009,113	24,019	1,050,097
	33.3%	20.1%	48.1%	57.4%	47.5%
1999	3,605	10,487	957,531	19,789	992,820
	32.9%	20.6%	51.5%	60.2%	50.7%
1998	2,051	9,351	861,446	18,293	892,356
	32.0%	21.7%	54.0%	61.1%	53.2%
1997	1,219	7,888	714,722	14,859	739,723
	30.6%	22.4%	55.3%	62.0%	54.4%
1996	903	5,311	535,066	10,120	552,083
	29.3%	23.1%	56.4%	62.3%	55.6%
1989-1995	4,355	21,900	1,121,278	18,786	1,168,505
	32.3%	23.8%	54.7%	61.4%	53.3%
<u><</u> 1988	7,277	18,087	191,950	2,548	221,931
	19.1%	16.6%	38.5%	51.9%	33.7%
Total	70,705	133,542	10,493,017	277,760	10,995,932
	29.5%	18.7%	40.6%	50.0%	40.1%

Table E-12: Number and rate of Final MOT failures by Vehicle Class and first year of vehicle use (2009)

E:	NI I	0	C ·	1 01	T
First year of	Number		failures by Vehi	cle Class	Total (incl.
use	1	2	4	7	Class 3 & 5)
2007-2009	284	82	12,325	672	14,535
	20.4%	7.1%	11.6%	21.2%	11.9%
2006	5,440	3,733	322,999	19,633	352,690
	20.2%	7.3%	12.9%	27.4%	13.3%
2005	5,424	4,047	419,798	20,612	451,053
	20.3%	7.7%	16.6%	30.6%	16.8%
2004	5,336	4,297	565,272	23,037	599,200
	22.1%	8.4%	21.3%	35.1%	21.4%
2003	5,540	4,807	675,978	22,377	710,020
	22.5%	9.1%	25.6%	38.1%	25.5%
2002	5,010	5,204	756,605	23,872	792,038
	23.1%	9.8%	28.9%	42.6%	28.7%
2001	5,024	5,256	794,726	24,179	830,344
	23.6%	10.6%	32.6%	45.9%	32.3%
2000	4,088	6,006	789,860	20,879	822,071
	24.2%	12.2%	37.7%	49.9%	37.2%
1999	2,586	6,426	769,175	17,399	796,801
	23.6%	12.6%	41.4%	52.9%	40.7%
1998	1,476	5,814	708,197	16,184	732,721
	23.0%	13.5%	44.4%	54.0%	43.7%
1997	849	5,015	596,203	13,312	616,277
	21.3%	14.2%	46.1%	55.6%	45.4%
1996	591	3,308	452,908	9,169	466,589
	19.2%	14.4%	47.7%	56.4%	47.0%
1989-1995	2,933	14,318	958,514	16,968	994,541
	21.7%	15.5%	46.7%	55.4%	45.4%
<u><</u> 1988	4,495	10,100	163,559	2,256	182,006
	11.8%	9.3%	32.8%	45.9%	27.6%
Total	49,076	78,413	7,986,119	230,549	8,360,886
	20.5%	11.0%	30.9%	41.5%	30.5%

Table E-13: Class 4 Normal MOT test results by mileage at time of test (2009)

Mileage at	Norma	I MOT Test Res	ult – Class 4 Ve	hicles	Total
time of test	Pass	PRS	Fail	Other*	
Not known	40868	8453	61951	155906	267178
	15.3%	3.2%	23.2%	58.4%	100.0%
1-	3220420	319715	620620	11211	4171966
29,999	77.2%	7.7%	14.9%	.3%	100.0%
30,000-	1943202	251663	534137	5778	2734780
39,999	71.1%	9.2%	19.5%	.2%	100.0%
40,000-	1835864	280688	676585	5812	2798949
49,999	65.6%	10.0%	24.2%	.2%	100.0%
50,000-	1643683	283718	774001	5999	2707401
59,999	60.7%	10.5%	28.6%	.2%	100.0%
60,000-	1419462	269371	820959	5956	2515748
69,999	56.4%	10.7%	32.6%	.2%	100.0%
70,000-	1197155	240148	816371	5653	2259327
79,999	53.0%	10.6%	36.1%	.3%	100.0%
80,000-	985408	203965	762998	5267	1957638
89,999	50.3%	10.4%	39.0%	.3%	100.0%
90,000-	790358	166980	676050	4897	1638285
99,999	48.2%	10.2%	41.3%	.3%	100.0%
100,000-	577359	124988	514134	3844	1220325
109,999	47.3%	10.2%	42.1%	.3%	100.0%
110,000-	443464	95751	417620	3131	959966
119,999	46.2%	10.0%	43.5%	.3%	100.0%
120,000-	337928	72855	334060	2577	747420
129,999	45.2%	9.7%	44.7%	.3%	100.0%
130,000-	252256	53857	258971	2104	567188
139,999	44.5%	9.5%	45.7%	.4%	100.0%
140,000-	185523	39014	196617	1528	422682
149,999	43.9%	9.2%	46.5%	.4%	100.0%
150,000-	296968	61342	328434	2838	689582
179,999	43.1%	8.9%	47.6%	.4%	100.0%
180,000+	175080	34391	192617	2002	404090
	43.3%	8.5%	47.7%	.5%	100.0%
Total	15344998	2506899	7986125	224503	26062525
	58.9%	9.6%	30.6%	.9%	100.0%

Table E-14: Class 7 Normal MOT test results by mileage at time of test (2009)

Mileage at	Norma	al MOT Test Res	sult – Class 7 Ve	ehicles	Total
time of test	Pass	PRS	Fail	Other*	
Not known	1469	324	2365	4476	8634
	17.0%	3.8%	27.4%	51.8%	100.0%
1-	22207	2750	8067	275	33299
29,999	66.7%	8.3%	24.2%	.8%	100.0%
30,000-	16295	2251	6902	136	25584
39,999	63.7%	8.8%	27.0%	.5%	100.0%
40,000-	19131	2832	9411	158	31532
49,999	60.7%	9.0%	29.8%	.5%	100.0%
50,000-	20411	3300	11817	189	35717
59,999	57.1%	9.2%	33.1%	.5%	100.0%
60,000-	21459	3493	13981	163	39096
69,999	54.9%	8.9%	35.8%	.4%	100.0%
70,000-	21453	3523	15537	154	40667
79,999	52.8%	8.7%	38.2%	.4%	100.0%
80,000-	20689	3723	16615	165	41192
89,999	50.2%	9.0%	40.3%	.4%	100.0%
90,000-	19842	3504	17212	175	40733
99,999	48.7%	8.6%	42.3%	.4%	100.0%
100,000-	17397	3159	16256	144	36956
109,999	47.1%	8.5%	44.0%	.4%	100.0%
110,000-	15400	2787	15529	150	33866
119,999	45.5%	8.2%	45.9%	.4%	100.0%
120,000-	13578	2533	14535	130	30776
129,999	44.1%	8.2%	47.2%	.4%	100.0%
130,000-	11876	2280	12853	100	27109
139,999	43.8%	8.4%	47.4%	.4%	100.0%
140,000-	9987	1970	11441	107	23505
149,999	42.5%	8.4%	48.7%	.5%	100.0%
150,000-	20917	3999	25195	213	50324
179,999	41.6%	7.9%	50.1%	.4%	100.0%
180,000+	25629	4783	32833	264	63509
	40.4%	7.5%	51.7%	.4%	100.0%
Total	277740	47211	230549	6999	562499
	49.4%	8.4%	41.0%	1.2%	100.0%

Reasons for Rejection (RfRs)

Table E-15: Class 1 vehicles Normal MOT test RfR by system (2009)

RfR					System Failure	ure				Total
Type	Lighting	Steering &	Brakes	Tyres &	Fuel &	Body &	Drive	Registration	Other	
	œ	suspension		wheels	exhaust	structure	system	plat & VIN		
	signalling									
Advisory	2,444	36,777	24,354	22,529	7,873	2,245	8,665	0	558	105445
	2.3%	34.9%	23.1%	21.4%	7.5%	2.1%	8.2%	0.0%	0.5%	100.0%
Fail	52,201	33,074	26,750	12,932	6,312	4,718	6,418	3,640	2,580	148625
	35.1%	22.3%	18.0%	8.7%	4.2%	3.2%	4.3%	2.4%	1.7%	100.0%
PRS	17,997	2,768	4,177	2,552	917	767	901	893	276	31248
	57.6%	8.9%	13.4%	8.2%	2.9%	2.5%	2.9%	2.9%	0.9%	100.0%
Total	72,642	72,619	55,281	38,013	15,102	7,730	15,984	4,533	3,414	285318
	25.5%	25.5%	19.4%	13.3%	5.3%	2.7%	5.6%	1.6%	1.2%	100.0%

Table E-16: Class 2 vehicles Normal MOT test RfR by system (2009)

	Total		PRS		Fail		Advisory			Type	RfR
18.5%	98,823	60.1%	44,353	28.1%	50,828	1.3%	3,642	signalling	œ	Lighting	
19.1%	101,975	7.1%	5,268	18.3%	33,111	22.8%	63,596		suspension	Steering &	
23.9%	127,467	8.6%	6,363	21.5%	38,882	29.5%	82,222			Brakes	
18.3%	97,871	8.0%	5,878	11.9%	21,489	25.3%	70,504		wheels	Tyres &	
7.4%	39,359	2.7%	2,024	4.6%	8,354	10.4%	28,981		exhaust	Fuel &	System Failure
	7,452		1,515	2.3%	4,159	0.6%	1,778		structure	Body &	ıre
7.0%	37,572	3.1%	2,282	4.5%	8,089	9.7%	27,201		system	Drive	
3.3%	17,495	7.1%	5,248	6.8%	12,247	0.0%	0		plat & VIN	Registration	
1.0%	5,415	1.1%	808	1.9%	3,491	0.4%	1,116			Other	
100.0%	533,429	100.0%	73,739	100.0%	180,650	100.0%	279,040				Total

TRL 100 PPR565

Table E-17: Class 4 vehicles Normal MOT test RfR by system (2009)

RfR					Syster	System Failure						Total
Туре	Lighting &	Steering	Lighting & Steering Suspension	Brakes	Tyres	Road	Seat	Body &	Fuel &	Drivers	Other	
	signalling					wheels	belts	structure	exhaust	view of		
										the road		
Advisory	614,509	759,690	5,078,730	7,754,848	5,022,730	196,991	279,883	295,668	1,688,067	837,550	5,711	22,534,377
•	2.7%	3.4%	22.5%	34.4%	22.3%	%6.0	1.2%	1.3%	7.5%	3.7%	0.0%	100.0%
Fail	6,489,610	906,947	5,380,532	6,314,875	3,029,895	129,593	715,545	677,031	2,423,540	2,227,057	730,497	29,025,122
	22.4%	3.1%	18.5%	21.8%	10.4%	0.4%	2.5%	2.3%	8.3%	7.7%	2.5%	100.0%
PRS	3,016,689	32,165	176,604	186,822	274,108	11,740	14,854	19,196	122,458	795,746	77,273	4,727,655
	63.8%	0.7%	3.7%	4.0%	5.8%	0.2%	0.3%	0.4%	2.6%	16.8%	1.6%	100.0%
Total	10,120,808 1,698,802	1,698,802	10,635,866 14,256,	14,256,545	8,326,733	338,324	338,324 1,010,282	991,895	4,234,065	3,860,353	813,481	56,287,154
	18.0%	3.0%	18.9%	25.3%	14.8%	0.6%	1.8%	1.8%	7.5%	6.9%	1.4%	100.0%

Table E-18: Class 7 vehicles Normal MOT test RfR by system (2009)

Total			6 624,986	%0.001	7 1,187,445				1 1,910,649	%0.001
	Other		516	0.1%	.52'53	2.1%	1,43	1.5%	27,251	1.4%
	Drivers	view of the road	33,489	5.4%	93,594	7.9%	11,591	11.8%	138,674	7.3%
	Fuel &	exhaust	22,494	3.6%	47,902	4.0%	1,889	1.9%	72,285	3.8%
	Body &	structure	15,473	2.5%	60,363	5.1%	1,063	1.1%	26'826	4.0%
	Seat	belts	13,280	2.1%	36,832	3.1%	482	0.5%	50,594	7.6%
System Failure	Road	wheels	2,035	0.3%	2,203	0.2%	203	0.2%	4,441	0.2%
Syste	Tyres		84,154	13.5%	25,593	4.7%	2,739	2.8%	142,486	7.5%
	Brakes		204,332	32.7%	311,616	26.2%	5,087	5.2%	521,035	27.3%
	Suspension		203,508	32.6%	202,614	17.1%	2,389	2.4%	408,511	21.4%
	Steering		32,177	5.1%	41,926	3.5%	732	0.7%	74,835	3.9%
	Lighting &	signalling	13,528	2.2%	309'608	26.1%	209'02	71.9%	869'668	20.6%
RfR	Type		Advisory	•	Fail		PRS		Total	

Effect of vehicle defects in road accidents

All vehicles deteriorate in service and this can have an adverse impact upon safety and the environment. Roadworthiness testing exists to ensure that at least a minimum level of benefits in a vehicle's original design and manufacture are retained in service. This study provides a high level overview of the likely impacts (if any) to road safety from changes to the MOT test frequency by vehicle age and time since last inspection. Two different theoretical models were developed and used to provide an estimate of the magnitude of the number of accidents and casualties which may occur annually due to less frequent MOT testing. Reducing the frequency of testing for newer vehicles will have adverse road safety consequences, but these would be substantially greater for older vehicles as the data presented in this report already indicates their high MOT failure rates. Although the theoretical models are not ideal, largely due to a lack of data upon which assumptions have been based, they consistently indicated an increase in accidents and casualties. However, it must be stressed that these are estimates only and further work would be required before a genuine quantification of the scale of these adverse road safety impacts will be known.

Other titles from this subject area

INSO05	How can we produce safer new drivers? S Helman, G B Grayson and A M Parkes. 2010
TRL673	Monitoring progress towards the 2010 casualty reduction target – 2008 data. J Broughton and J Knowles. 2010
PPR522	Cross-modal safety: risk and public perceptions – phase 2 report. D Lynam, J Kennedy, S Helman and T Taig. 2010
PPR513	Linking accidents in national statistics to in-depth accident data. D C Richards, R E Cookson and R W Cuerden. 2010
PPR498	Further analyses of driver licence records from DVLA. J Broughton and B Lawton. 2010
PPR446	The potential for cycle helmets to prevent injury – a review of the evidence. D Hynd, R Cuerden, S Reid and S Adams. 2009
PPR442	Passion, performance, practicality: motorcyclists' motivations and attitudes to safety – motorcycle safety research project. S Christmas, D Young, R Cookson and R Cuerden. 2009

TRL

Crowthorne House, Nine Mile Ride Wokingham, Berkshire RG40 3GA United Kingdom

T: +44 (0) 1344 773131
F: +44 (0) 1344 770356
E: enquiries@trl.co.uk
W: www.trl.co.uk

Published by

IHS.

IHS

Willoughby Road, Bracknell Berkshire RG12 8FB United Kingdom

T: +44 (0) 1344 328038 F: +44 (0) 1344 328005

E: trl@ihs.com W: http://emeastore.ihs.com Price code: 4X ISSN 0968-4093

PRS6