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Glossary 

Term Definition 

Clustering Finding important groups in data that have similar characteristics 

Decision tree A tree like structure where different branches mean different outcomes 
based on input values 

Machine learning Technique for learning patterns from data 

Model training The process of learning model parameters given a data set call training 
data set 

Gradient 
Boosted 

A technique in decision tree which uses multiple models and improves 
accuracy using learning gradient; where gradient is the difference in 
accuracy between estimated models 

Convolution 
layer 

The layers that are used in a neural network to learn features from the 
input data. 

Max pooling It is inserted between convolution layers, and is used to selectively pay 
attention to different sections in an image based on their score. 

CNN architecture The arrangement of layers in a Convolutional Neural Network. 

Overfitting When the learned function is too closely approximating the training 
data including the unimportant trends and hence becomes less useful 
for prediction. 
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Abstract 

As the management and analysis of large and complex data sets is becoming an increasingly 
important part of TRL’s work across business areas, the TRL Academy is funding a 
programme of research that aims to develop and enhance machine learning. Machine 
learning can process large amounts of data more quickly and efficiently than manual 
analysis, and it may also reveal relationships between data sets that have not been 
considered. This report summarises the research carried out under the TRL Limited 
reinvestment scheme. The project considered three different types of potential applications 
of machine learning: Analysis of train driver behaviour (clustering), which successfully used 
clustering to analyse a small data set and still provide some useful conclusions; Condition 
forecasting of road pavements which showed that the resources of existing data sets is 
significant and though the final results were inconclusive the act of researching this data has 
built a stable framework on which to progress; and the crack detection study showed that 
some of the more mundane and labour intensive processes can be automated and useful 
results obtained.  
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Executive summary 

Introduction 

As the management and analysis of large and complex data sets is becoming an increasingly 
important part of TRL’s work across business areas, the TRL Academy is funding a 
programme of research that aims to develop and enhance machine learning. Machine 
learning can process large amounts of data more quickly and efficiently than manual 
analysis, and it may also reveal relationships between data sets that have not been 
considered. This report summaries the research carried out under the 2017/18 
reinvestment project ‘Developing and enhancing Machine Learning skills within TRL’. 

The objectives of the project were to: 

• To explore different applications of machine learning across different areas of 
transport research; 

• To develop TRL's capability in machine learning in order to better support clients  

in its research and consultancy work; and 

• To develop a cross-organisational machine learning community in order to 
exchange ideas and lessons learnt in order to develop the company’s skills. 

The project considered three different types of potential applications of machine learning in 
order to fulfil the projects’ objectives. The three case studies covered different types of data 
and analysis techniques but the team met regularly to discuss the work and exchange ideas.  

What is machine learning 

Machine learning is a mathematical discipline that helps to optimise a performance criterion 
using example data or past experience. It is becoming more widely used primarily because 
of the availability of large data bases and greater computing power. The most common 
applications for machine learning are categorical analysis and image analysis, but it can 
potentially be used on any kind of dataset, whether the data is numeric, labelled, or mixed.  

Types of techniques 

Due to the recent popularity of machine learning a variety of tools exist. The related 
algorithms and programs can be allocated to three areas:  

 Classification – categorisation of input data into a number of pre-defined groups. 
Often classification problems are binary, e.g. between two options.  

 Regression – fitting the data to represent an established type of mathematical 
function. Generally both linear and non-linear regression is possible.  

 Clustering – separation of data into a set number of groups (clusters) based on an 
appropriate measure of distance between data points.  
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Vast streams of data are generated in the transport industry of varying kinds. Machine 
learning could be used to process the data into something meaningful and potentially useful. 
In the context of this project:  

 Telemetry data from trains has been used to characterise driver behaviour,  

 surveying results have been used to estimate the condition of the road surface, and  

 images produced by pavement scanning have been used to the to identify cracks in 
the road. 

Case study 1: Analysis of train driver behaviour (clustering) 

Case study 1 considers data from sensors on a train during 20 journeys and 9 drivers 
between Dublin and Maynooth in Ireland. Examples of the data collected included: speed; 
brake demand; aspects of CAWS (Continuous Automatic Warning System); aspects of door 
operation; and power control. 

For various reasons it was necessary to make the data more uniform before use. Discrete 
Time Warping was used to map elements of one time series onto another. The amount of 
data available was not large, but was sufficient to consider some machine learning principles.  

A number of hypotheses were tested and two were found to give coherent results. These 
were engine power and braking profile. An addition was to see if a particular driver X was 
significantly different from the general picture. Attempts were made to cluster journeys 
based on selected data. Some clustering was observed indicating had there been more data 
available this approach may have given some meaningful results. The study also highlighted 
how important the data structure is in machine learning in order to produce worthwhile 
results. 

Case study 2: Condition forecasting of road pavements  

Forecasting pavement condition is necessary to allow road management authorities to 
better estimate when a road will require maintenance. Existing algorithms are known to 
have their limitations and are not trusted by the industry.  

Now, the enormous amounts of condition data available can be used to better predict how 
the pavement will deteriorate. This case study applied a gradient boosted decision tree 
machine learning algorithm to a set of road surface data with the aim of establishing 
correlations between survey results and the specific road properties. The decision tree 
working principle is splitting the data based on the entropy gain or on a similar criterion.  

After attempting other methodologies, it was decided to train a model tree for each section, 
and then design a suitable novel method to have each tree “vote” on the input data. The 
vote weights were distributed based on the measure of accuracy of that tree.  

Thus far the results have not been very useful with error metrics changed wildly over the 
data range. The analysis was also time consuming: analysing all 26645 sections, including 
both training and testing, took the order of two working days. One way to save time in 
future tests would be to ensure that very precise research questions are asked and to 
conduct more trials in different combinations. 
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Further work could include linking the pavement condition dataset with other datasets, such 
as weather and traffic. Doing so could allow predict the deterioration of pavement in more 
robust and accurate ways.  

Case study 3: The use of image processing for detecting cracks and 
other features in road pavements (classification) 

This case study used images from downward and forward facing images of the road 
pavement. The overall outline of the case study was to use machine learning algorithms for 
the image processing task. Much of the data had already been processed manually and 
therefore was one potential source for training and evaluating the success of the algorithms. 

The input data was prepared as a Convolutional Neural Network (CNN). Then the effect of 
varying the different parameters in the CNN, like number of layers, size of filters, learning 
rate and data batch size was considered as was the effect of different architecture on 
training and prediction. 

The parametric investigation showed that there is still much to explore in terms of 
developing the technique to achieve the required results. However, even though the 
methodology required a lot of tweaking to find the right parameter values, the work 
showed that labour intensive processes can be automated and produce useful results. 

Conclusion 

These case studies have highlighted that machine learning can be used across the whole 
transport industry even if the results vary vastly depending on the problem being tackled.  

The train driver behaviour study successfully used clustering to analyse a small data set and 
still provide some useful conclusions.  

The condition forecasting of road pavements study shows that the resources of existing data 
sets is significant. The final results were inconclusive but the act of researching this data has 
now built a stable framework on which to progress future work.  

The crack detection study showed that some of the more mundane and labour intensive 
processes can be automated and useful results obtained. 

Overall, the studies show that machine learning can be applied to numerous areas of the 
transport industry to help analyse known problems and build frameworks for future 
research. No one method fits all problem types so careful initial analysis of individual 
problems is needed to identify the most suitable approach. The transport industry already 
has a vast array of data sets waiting to be explored and exploited, some of them could even 
be linked together to enrich the information contained within. Even in those areas where 
data is scarce it is still possible to identify trends and recommend how to proceed further. 
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1 Introduction 

As the management and analysis of large and complex data sets is becoming an increasingly 
important part of TRL’s work across business areas, the TRL Academy is funding a 
programme of research that aims to develop and enhance machine learning skills within TRL. 
Machine learning is a useful data analysis tool as it can be used to process large amounts of 
data more quickly and efficiently than manual analysis, and it may also reveal relationships 
between data sets that have not been considered by researchers. This report summaries the 
research carried out under the 2017/18 reinvestment project ‘Developing and enhancing 
Machine Learning skills within TRL’. 

1.1 Project objectives 

The objectives of the project were to: 

• To explore different applications of machine learning across different areas of 
transport research; 

• To develop TRL's capability in machine learning in order to support its research 

and consultancy work; and 

• To develop a cross-organisational machine learning community where those with 
an interest in machine learning can exchange ideas and lessons learnt in order to 
develop their skills. 

The project builds on the successful machine learning project carried out in 2016/17 
developing machine learning algorithms to improve TRL’s traffic management software and 
previous TRL Academy projects related to big data and data analytics.  

1.2 Project scope 

The project selected three different types of potential applications of machine learning in 
order to explore the potential benefits of machine learning and grow the team’s capability 
in different types of machine learning. These three case study examples cover different 
types of data and analysis techniques. Different members of the team worked on different 
cases, but all the team met regularly to discuss the case studies and exchange ideas.  

1.3 Report layout 

The report is divided into the following Sections: 

• Section 1 (this section) introduces the project and its objectives 

• Section 2 provides a short description of what machine learning is and the 
various types of methods that can be employed. 

• Sections 3, 4 and 5 describe the three case studies including the research 
objectives, method employed, results and conclusions. 

• Section 6 discusses what has been learnt from the three case studies and 
potential further work. 
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• Section 7 summaries the project findings and conclusions. 
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2 Background 

2.1 What is machine learning 

Machine learning is a mathematical discipline that helps to optimise a performance criterion 
using example data or past experience. A good machine learning algorithm organises the 
available data in the best way possible. The “best” here means that the interaction of the 
real life objects that produced that data in the first place can be replicated, and the new 
incoming data can be allocated in a similar way. Of course, this means that the outcome of 
machine learning mostly depends on how representative the input data is of a typical 
situation. Usually, that is ensured by collecting a sufficiently large amount of data, which 
makes machine learning impractical to do manually and warrants utilising large amounts of 
computing power.  

The most common applications for machine learning are categorical analysis and image 
analysis, but it can potentially be used on any kind of dataset, whether the data is numeric, 
labelled, or mixed. The biggest challenge lies in collecting enough data points to adequately 
train a model. In this context, a “model” is an assumed relationship between the inputs and 
the outputs, while “training” is changing that model until it is true for the largest proportion 
of the dataset possible.  

2.2 Types of techniques 

Due to the recent popularity of machine learning in almost every industry that handles large 
volumes of data, a variety of tools exist for both the layman and professional. Roughly, the 
related algorithms and programs can be allocated to three areas:  

 Classification – categorisation of input data into a number of pre-defined groups. 
Often classification problems are binary, e.g. between two options, and this class of 
problems is the most well-researched.  

 Regression – fitting the data to represent an established type of mathematical 
function. There are several approaches, but generally both linear and non-linear 
regression is possible.  

 Clustering – separation of data into a set number of groups (clusters) based on an 
appropriate measure of distance between data points.  

In the above paragraph, classification and regression are termed “supervised” methods, 
while clustering is “unsupervised”. “Supervised” machine learning can be defined as any 
approach that involves somebody outside of the algorithm defining beforehand what data is 
considered an input or an output. “Unsupervised” machine learning, by contrast, assumes 
nothing about how the data points relate to each other prior to the machine learning 
process. Generally, supervised methods are easier and faster to implement and interpret, 
while the unsupervised methods require less pre-processing.  
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2.3 The use of machine learning in transport 

All modern means of transportation implement telemetry and feedback devices in some 
capacity, since any driver needs to be aware of the situation around the vehicle. These 
devices generate vast streams of data, and most of it is discarded after its acquisition and 
immediate use. Machine Learning could be used to process the data and the amounts of 
data available would be expected to guarantee that the algorithms would be able to sort 
and organise the available information into something meaningful and potentially useful. 
This means the way to handle the situation better could be easily identified. In the context 
of this project:  

 Telemetry data from trains has been used to characterise driver behaviour,  

 surveying results have been used to estimate the condition of the road surface, and  

 images produced by pavement scanning have been used to the to identify cracks in 
the road. 
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3 Case study 1: Analysis of train driver behaviour (clustering) 

This case study is based on the results of analysing a set of 40 tables containing readings 
from various sensors on a train during 20 journeys between stations Connolly to Maynooth 
and Maynooth to Pearse in Ireland. Nine drivers were registered on these journeys, with 
driving experience ranging from 2 to 14 years. The number of journeys each driver 
completed varied as well – drivers 3, 5 and 6 having the most journeys related to them. The 
forward and return journeys have been analysed separately. 

3.1 Objectives 

The aim of the case study was to investigate whether algorithmic methods can produce 
results on par with the estimation abilities of an experienced consultant. Further, in this 
section elaboration of the data structure was sought, expectations and results of both 
methods was explained, and conclusions drawn on how the two compare. 

3.2 Methodology 

3.2.1 Description of data 

Each journey is associated with a continuous stream of data recorded in spreadsheet, with 
each column corresponding to an individual input variable. All available variables were 
recorded for each instance, some of them being essentially binary flags. Among the 
recorded variables were: 

• Record ID – Unique Identifier. 

• Date – Recording date. 

• Time – Timestamp. 

• Distance – distance counter from the moment of installation until present. 

• System speed – roughly accurate speed of travel at the time of recording. 

• Brake demand – a value between 0 and 7 associated with the position of the 
brake control. 

• CAWS – aspects of CAWS (Continuous Automatic Warning System). 

• Forward – is the train moving forward (1 if true). 

• Reverse – Is the train reversing (1 if true). 

• Horn switch – is the driver sounding the horn (1 if true). 

• Door controls – various aspects of door operation 

• Latitude – GPS coordinate. 

• Power control - a value between 0 and 5 describing the position of the power 
control lever. 

The data was presented in series to mirror the way it was collected throughout the journey. 
However, the number of data points varies within each individual file. This was because 
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although the recording triggered on each sensor change, some sensor inputs have been 
omitted from the available information due to irrelevancy. As a result, it was necessary to 
make the data more uniform before any calculations could be made. The solution was to 
use discrete time warping (DTW), an algorithm that permits mapping elements of one time 
series onto another. To present the data in a standard format, and to avoid interpolating 
extra data into the system, all files have been warped with respect to the one with the least 
number of records. 

3.3 Analytic estimates 

The following hypotheses have been investigated: 

1. Drivers can be categorised by using high braking levels 
2. Drivers can be categorised by time elapsed between CAWS change and response  
3. Journeys can be categorised by time spent at red signals  
4. Journeys can be categorised on usage the emergency brake on approach to a red 

signal   
5. Journeys can be categorised on putting the train in neutral when stopped at stations 
6. Drivers can be categorised on how they use the horn 
7. Drivers can be categorised on time elapsed between doors closing and power 

application, and also duration of the door opening 
8. Drivers can be classified on power application profiles 

Previous internal TRL research has shown: 

 Drivers can be classified by power reading. 

 Drivers can be distinctly classified on braking profiles. 

 The time spent between stopping at a station and the doors opening has regularly 
exceeded the standard recommended time of 30 seconds. 

 Door-closing-to-power-applied-time is on average 8 seconds. 

 Red signal approach was not a significant factor. 

 CAWS reaction was not found to be significant. 

 Emergency brake usage is rare but it is reasonable to expect that using an emergency 
brake before a red light indicates a Signal Passed At Danger (SPAD). 

 Initiating and changing power has a positive correlation with heart rate. 

 Initiating and changing braking has a negative correlation with heart rate. 

 Hypothesis 1 deemed plausible. 

 Hypothesis 2 somewhat holds up but is more relevant to journeys as opposed to 
drivers. 

 Hypothesis 4 is worth considering. 

 Hypothesis 5 Is false. 

 Hypothesis 6 relies on inaccurately recorded data and it is not useful. 

 Hypothesis 7 is probably plausible. 

 Hypothesis 8 is correct. 

 Forward/Reverse settings didn’t have any trends associated with them. 



Machine Learning   

 

 

1.0 14 PPR863 

The feasibility study was carried out as preliminary clustering to see if sensible results could 

be obtained. The hypotheses tested were 1,2,4,7 and 8. The preliminaries indicated that 

only 1 and 8 were producing coherent results. 

The research problem has been formulated to confirm whether the following variables 

would be the most significant in characterising drivers: 

 Engine Power 

 Braking profile 

An addition was to see if driver X (driver 4 in graphs in Figures 1 to 4) was significantly 

different from the general picture. 

3.4 Results 

After pre-processing the files, attempts were made to cluster journeys based on selected 

columns in the data, treating the whole column as a data vector. Clustering with K-means 

based on Euclidian distance revealed groupings similar in some aspects to analytical 

findings. The K = 9 configuration was chosen, because the expected result would be 9 

distinct clusters equal to the number of drivers, as a reference to show the quality of the 

metric and its reliability. 

Connolly – Maynooth route (note – each column is a cluster, the red numbers mark the 

driver who did the journey: 
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 Engine power – Almost all journeys done by driver 3 are together in the same 
cluster, except for one. Nothing conclusive can be said about other drivers. 

 

Figure 1.Clustering of the Connolly – Maynooth journeys based on application of the 
engine power by the driver during the journey. 

 Braking power – perfectly clustered driver 3, drivers 5 and 6 now have a cluster each 
consisting exclusively of that driver’s journeys, which is an improvement compared 
to clustering based on the engine power. 
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Figure 2. Clustering of the Connolly – Maynooth journeys based on application of the 
brake power by the driver during the journey 
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Maynooth to Pearse (return journey, Pearse is a station neighbouring Connolly): 

 Engine power – Good results on singling out driver 3, isolated single-journeyed 
drivers 7 and 8, barely passable results on drivers 5 and 6 because some of their 
journeys are grouped together. …

 

Figure 3. Clustering of the Maynooth - Pearse journeys based on application of the engine 
power by the driver during the journey. 
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 Brake power – still separates drivers 7 and 8, but drivers 3 and 6 are on par now in 
terms of clustering quality.  

 

Figure 4. Clustering of the Maynooth - Pearse journeys based on application of the brake 
power by the driver during the journey 

3.5 Conclusions and recommendations 

Clustering on some variables was in line with the analytical expectations, but due to the 
varying number of journeys associated with each driver, and the small amount of data 
points, it is difficult to conclude unambiguously. In the end, it was possible to conclude that 
a machine learning approach would be able to hint at correlations similar to those 
recognised by a human, but making it approach manual observation in quality was not 
possible in this particular case study due to the limited amount of data. In addition, the fact 
that there was an uneven number of journeys per driver seriously affected the accuracy of 
the clustering algorithm. Quite a few drivers have had only one journey associated with 
them and this further hindered useful observations. This case study highlights how 
important the data structure is in machine learning in order to produce worthwhile results. 

Even with the very limited amount of data it doesn’t take too much imagination to 
appreciate that much could be achieved with much larger amounts of data – amounts 
though would normally be very easy to collect under similar circumstance. 
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4 Case study 2: Condition forecasting of road pavements  

Forecasting pavement condition is necessary because it can enable road management 
authorities to better estimate when a road will require maintenance. Being able to do this 
accurately has many economic and societal benefits. Maintaining the road at the right time 
can prevent unnecessary interventions that cost more money, cause more roadworks and 
therefore delays to the public. Existing algorithms used to forecast road pavement condition 
are known to have their limitations: those currently used by Highways England, for example, 
are over 15 years old and are not trusted by the industry.  

Advances in big data and machine learning techniques make it possible to improve upon 
existing algorithms. The advantage of using this type of methodology rather than existing 
methods is that there are enormous amounts of condition data currently available that can 
be used to better predict how the pavement will deteriorate. It is also possible to link the 
data to other datasets that will impact upon the condition of the pavement e.g. Traffic.  

This case study applied a gradient boosted decision tree machine learning algorithm to a set 
of road surface data with the aim of establishing correlations between survey results and 
the specific road properties. The methods used and the steps taken to create a suitable 
processing environment for that data are described below. 

4.1 Objectives 

The case study objectives were to: 

• Download data from Highways England Pavement Management System (HAPMS)  
for use in the analysis including network, construction and condition data 

• Convert the downloaded data into a PostgreSQL format to enable easier access 
and processing, while simultaneously filtering out redundant columns.  

• Link the Postgres tables together so that the queries would be more 
straightforward and use numerical identifiers only. 

• Design, build and test the Python script which would store the results of training 
in testing in an accessible way.  

• Explore the available data in order to train a predictive model based on 
correlating variables and later to create a model that would estimate 
deterioration rates or future survey results. 

4.2 Methodology 

4.2.1 Approach 

Decision trees are the most versatile machine learning tool currently available. Their 
working principle is splitting the data based on the entropy gain or on a similar criterion. 
Decision trees deduce conditional relationships, rather than linear dependencies, making 
them, in principle, easier to understand. 
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The algorithm used in this instance has been a powerful C/C++ based open-source package 
XGBoost, a popular tool for most machine learning problems due to its ability to compute 
both regression and classification models, work with missing values and flexible settings. 

 

Figure 5 Example of what a decision tree is like 

In a Classification And Regression Tree (CART) each leaf on the tree has a score associated 
with it, which is later used as a weight on a result. 

For large and convoluted sets of data, one tree might not be enough. In such cases XGBoost 
uses an ensemble of CARTs that are split in a multitude of ways initially and thus end up 
writing complementary scores for the data. These scores can be combined and compared 
across different trees for each item, which means every individual result is an aggregate. 

 

Figure 6 “Decision forest”. 
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XGBoost trees are called “boosted”, because each learning iteration (except for the first one) 
is based on the previous objective function. This “nudges” the next model in the right 
direction. 

4.2.2 Data set 

The following datasets were downloaded from HAPMS as of 31st March 2017 and dating 

back 10 years: 

 Network Data 

 Pavement Condition Data (TRACS) 

 Pavement Construction Data 

The pavement condition dataset are results of the TRAffic-speed Condition Surveys (TRACS) 

that include surface defects such as the transverse and longitudinal profile of the road. The 

data is referenced by the HAPMS road sections data that also links to the pavement 

construction data. 

Figure 7 shows the typical rows of data generated by a single request in PostgreSQL format.  
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Figure 7. Example data set  

There are 26645 road sections in total, and the data has been collected over 17 years (2000 

- 2017) leading to about 20 GB worth of data. This dramatically increases the time it takes to 

process the model unless it is possible to discard some of the data. There are 17 variables in 

total, 10 of them are the survey results and 7 are the pavement and construction data.  

4.2.3 Calculations 

Due to the size of the dataset and the memory limitations, the data, which was kept on a 

central database, was pre-processed locally on the machine. For the initial experiments, in 

order to estimate the future timescales, regression on 16 variables to 1 was attempted, the 

output variable being “texture” of the road. Initially, the combined model was trained on all 

sections at once, but this design quickly proved to be very error prone and too slow on the 

scale of a day. It was decided to train a model tree for each section, and then design a 

suitable novel method to have each tree “vote” on the input data. The vote weights were 

distributed based on the measure of accuracy of that tree. The first experiment was merely 

an attempt to validate the decision tree regressor. 
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4.3 Results 

The results from analysing the “texture” for the first 10,000 sections are shown below. The 

variable on the first diagram – “explained variance score”, reflects how much the predicted 

variance was explained by the variance in real data: 

 (1 − 
𝑉𝑎𝑟{𝑦−�̂�}

𝑉𝑎𝑟{𝑦}
) , 𝑦 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒, �̂� 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.  

The second diagram plots a logarithm of Root Mean Square Error: 

log10 √
1

𝑛
∑(𝑦 − �̂�)2 , 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

 

 

Figure 8. Explained variance calculated for each section of the network based on the 
assumed relationship between the texture parameter and other 9 parameters of the 
survey. 
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Figure 9. Log of the error in predicting texture of the road for each section based on the 
assumed model. 

Thus far the results have not been very helpful: both error metrics changed wildly over the 

data range. The analysis was also time consuming: analysing all 26645 sections, including 

both training and testing, took the order of two working days. One way to save time in 

future tests would be to ensure that very precise research questions are asked and to 

conduct more trials in different combinations. 

4.4 Conclusions and recommendations 

So far the project has resulted in a stable data retrieval system implemented as a python 
script. This made it possible to quickly query the database to collate any number of inputs 
and outputs from those available and produce a single global model for the dataset or a 
multitude of section-specific ones. The script also allowed for the assessment of individual 
models, and could perform a combined aggregate test on several trees at once. Further 
work could include designing a procedure that would provide consistently good estimates 
for at least one of the outputs. 

Further work could also include linking the pavement condition dataset with other datasets, 
such as weather and traffic. These datasets already exist and linking them using krigging and 
interpolation methods could allow the deterioration of pavement to be predicted in more 
robust and accurate ways. This work would require some significant processing and time, 
however, because of the finer temporal granularity of weather and traffic in comparison to 
pavement condition. 
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5 Case study 3: The use of image processing for detecting cracks 
and other features in road pavements (classification) 

The work described in this case study focuses on image analysis, complementing the other 
case studies which focused on the analysis of numerical data. This case study focused on the 
analysis of images of road pavements collected through Surface Condition Assessment of 
National Network of Roads (SCANNER) consisting of downward and forward facing images 
of the road pavement. Much of the data had already been processed manually and 
therefore was one potential source for training and evaluating the success of the algorithms. 

5.1 Objectives 

The overall outline of the case study was to use machine learning algorithms for the image 
processing task. The main objective of the work was to develop TRL’s capability in machine 
learning, and additionally identify an approach for detecting or assessing defects from 
images, and developing ideas on how the approach could be developed further for   
analysing other image sets for example forward facing images. 

5.2 Methodology 

In this section the preparation of the input data to the Convolutional Neural Network (CNN)  
is discussed, then the effect on the accuracy of varying the different parameters in CNN like 
number of layers, size of filters, learning rate and data batch size (also called hyper-
parameters to distinguish from network parameters like weights and biases that are learned 
is the training stage) and the effect of different architecture on training and prediction was 
investigated. 

5.2.1 Data preparation 

The input data to the CNN network was raw images of the road surface. The raw image was 
split into sub-images of 200mm × 200mm in dimension, then each sub image labelled “Yes” 
if it contained a feature for example a crack or an iron work (see Figure 10 and Figure 11), 
and “No” if not.  

The data set was split randomly into two halves, a training set and a validation set. The first 
set was used to train the machine learning algorithm, and the second set to assess its 
predictive accuracy. 

Supervised training of the machine learning was used, in the sense that the training was 
performed on a data set for which the type of defect to classify was known. 

The data preparation stage included any pre-processing applied to the images. This included 
aligning the image to the manual grid as depicted in Figure 10 and Figure 11 for the case of 
cracking and iron work respectively. Other processing included enhancing the image quality 
to reduce the effect of lighting and increasing the contrast of the features. 
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Figure 10: Aligning the road image (Top) and the manual analysis image (Bottom) showing 
cracking 

 

 

Figure 11:  Aligning the road image (Top) and the manual analysis image (Bottom) showing 
iron work 

A data augmentation procedure was performed using transformations depicted in Figure 13. 
Additional transformations (not shown in the figure) that involved rotation of the image 
with angles of 30o, 45o, and 120o and expansion were also used. The data augmentation 
used in the case of cracking, resulted in approximately 14% of the sub-images having a crack 
in them; and 86% not having a crack. 
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Figure 12: A sample of Sub-images used for training a Convolutional Neural Network, the 
sub-images that contain a crack were  

 

 

Figure 13: Transformation applied to the sub-images for data augmentation 
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5.2.2 Model description 

The different kinds of components of a convolutional neural network are convolution layers, 
max-pooling layers, fully connected layers. 

The convolutional layer, basically applies filters to the image in order to learn semantic 
features from it, then uses these learned features to assign scores to different parts of an 
image. The max pooling layer reduces the size of the images to highlight only the sections 
associated to the important features and ignore the unimportant regions. The fully 
connected layer takes the scores and classifies the images into different classes based on 
the scores gives for different features. 

The CNN architecture had six convolution layers with a max pooling layer inserted after each 
convolution layer. Dropouts were added after each two convolutions and after the fully 
connected layer, see Figure 14. 

 

Figure 14: CNN architecture used in this study 

5.2.3 Training approach 

The training data set was split into a training data set and validation data set. The size of the 
validation set was 6% of the size of the training set, about 5,000 images, still enough to give 
an idea about the accuracy of the classifier. 

5.3 Results 

The assessment of the performance started first by investigating the effect of varying some 
parameters of the CNN on the accuracy to assess the performance of the classifier 

This was followed by calculating the classification errors on the validation data set in section 
5.3.2, and the false positives and false negatives arranged in the form of a matrix known as 
the confusion matrix to show the percentage of genuine defects.  

5.3.1 Parametric investigation  

5.3.1.1 Effect of batch size 

Batch size controls the amount of data accessed in any iteration. Figure 15 depicts the 
results of accuracy for batch sizes of 32, 64, 128, and 256, and Figure 16 depicts the loss. It is 
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observed that a batch size of 32 yielded the lowest accuracy and the highest loss. The 
results show that the higher the batch size, the better the accuracy and the lower the loss. 

 

 

Figure 15: Effect of batch size on the Accuracy curve 

 

Figure 16: Effect of batch size on the loss curve 

 

5.3.1.2 Effect of learning rate 

The learning rate was varied as 0.0005, 0.001 and 0.005. It was observed that the learning 
rate affected the accuracy and the loss. For instance increasing the learning rate from 0.001 
to 0.005 resulted in a decrease of the accuracy of classification of images by approximately 
2.4%. The loss increased by approximately 25%. 
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Figure 17: Effect of learning rate on the accuracy 

 

 

Figure 18: Effect of learning rate on the loss 

5.3.1.3 Effect of dropout 

The human brain is resilient to damage because it has redundancy and ability to create new 
neural connections. Dropout is a technique to simulate this process in neural networks by 
subsequently cutting neural network connections between layers at training time. 

Dropout is a very efficient way to reduce overfitting of the training data. The dropout 

percentage  for the fully connected layer was varied between 0.3 and 0.7. The effect on 
the accuracy and the loss is shown in Figure 19 and Figure 20: the results show that dropout 

percentage , does not have an effect on the accuracy or the loss globally. However the 

smallest value of  resulted in less local fluctuation in the loss curve. 
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Figure 19: Effect of dropout on the accuracy 

 

 

Figure 20: Effect of dropout on the loss 

5.3.2 Prediction and results 

5.3.2.1 Effect of filter sizes 

A filter is a matrix used by the convolution layer to multiply over different sub images of the 
image and assign scores in order to detect variations. 

In order to investigate the effect of filter size, the matrix size was varied and its effect on 
accuracy was checked. 
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Figure 21: General CNN Architecture demonstrating the functioning of a convolutional 
architecture showing different sizes of filters (Hassan et all, 1970) 

The effect of filter size on classification accuracy cannot be generalized for all problems and 
works differently for each kind of classification problem. This experiment was designed to 
study the effect of filter size on the road crack classification problem and the result of filter 
size on classification accuracy can be seen in Figures 22 and 23. 

In the implemented test runs presented in Figures 22 and 23, the orange line indicates 5x5 
filter size for a 3 layer convolutional network and the purple line indicates a 3x3 filter size 
for a 3 layer convolutional network. It can be seen that both training and validation 
accuracies are better for the 5x5 filter size indicating that it was more suited to the problem. 

 

 

 

Figure 22: Training accuracy and loss vs number of epochs (Orange line 5x5 filters and 
Purple line 3x3 filters) 
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Figure 23: Validation accuracy and loss vs number of epochs (Orange line 5x5 filters and 
Purple line 3x3 filters) 

5.3.2.2 Effect of number of layers 

As the number of layers increases in a CNN architecture its capability to characterize 
complex shapes (like facial expressions and features etc.) increases. The downside to 
increasing the number of layers was that they are harder to train and need more data since 
the number of parameters increases. This requires significant computing power which may 
not always be available. 

5.3.2.3 Prediction results 

The output of the convolution operation at layer number 3 can be visualized and is observed 
to be as follows. 

 

Figure 24: Image seen through the third CNN layer 
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It can be observed that the classifier was able to train on crack detection and was able to 
identify the important regions as crack regions. 

The confusion matrix obtained was as follows. The matrix indicates on the y-axis the number 
of images with originally given labels and the x-axis indicates predicted labels. It can be seen 
that around 90% of the images were on the diagonal which indicated they were classified 
correctly.  

 

Figure 25: Confusion matrix for a 5x5 filter size CNN 

5.3.2.4 Effect of adding Spatial Transform Network (STN) 

The addition of Spatial Transform Networks was explored and the filters learned in case of 
spatial transform nets were visualized in Figure 26 to understand the training process.  It 
was found that the learned filters looked like gabor filters (Medina et all, 1970). 

Also it was found that some of the filters had specific shapes which might signify other 
filters were also important and were learned in addition to the normal gabor filters. 

 

Figure 26: Visualizing weights in layers 
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It was observed that adding a spatial transform network led to the reduction of validation 
accuracy from 95 % to 84 %. 

5.4 Conclusions and recommendations 

5.4.1 Conclusions 

The parametric investigation showed that: 

 A better accuracy can be achieved by increasing the batch size; the increase of batch 
size also has an effect on reducing the local variation in the accuracy curve and the 
loss curve.  

 Decreasing the learning from 0.005 to 0.001 yielded an increase of 2.4% in the 
accuracy; a further decrease to 0.0005 did not make much difference in terms of 
overall accuracy. 

 Increasing the dropouts for the fully connected layer did not make a difference in 
the overall accuracy. 

 Increasing the filter size from 3x3 to 5x5 had the effect of increasing slightly the 
accuracy in our data set. Using a 3 convolutional-layer neural network with a 5x5 
filter, a binary classification to separate cracked from un-cracked yielded an 
accuracy of 92.5% of the images being correctly classified as either cracked or un-
cracked. The proportion of images with a crack that were incorrectly classified as 
not cracked was 2.4%. 

 The use of a larger dataset and manually separating images with good 
distinguishable crack features resulted in an increase in the test accuracy from 92.5 % 
to 95%. 

 Inclusion of spatial transform networks reduced the test accuracy from 95 % to 84 % 
and hence was not suitable to the problem. 

 Training of AlexNet for this problem resulted in inadequate training because the 
CNN architecture had too many parameters and the size of the dataset was 
inadequate to learn them all. A larger dataset could produce a better result in this 
situation. 

5.4.2 Further work 

Initial thoughts on further work: 

1. Use Laser Crack Measurement System (LCMS) data sets for which there are 

reference data sets (the data set could be from a manual analysis or an output of 

algorithms with known performance). This data set combines information from 

images and 3D profile to get better predictions. 

2. Use of forward facing images, retro-reflectivity and Light Detection and Ranging 
(LIDAR) data to detect changes in non-pavement assets; for example information 
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panels that come in different shapes and sizes to assess their condition in terms of 
alignment, retro properties etc. 

3. Detection of drains and manholes with a convolutional neural network. For this,  
accurate data for the position of drains and manholes is available.  

4. Existing algorithms have difficulty in detecting give-way signs and slow signs using 
retro-reflectivity data. To overcome this, the idea is to combine forward facing video 
synchronised with retro-reflectivity and feed this into CNN in order to find out its 
location and identify where a road sign correlates with retro-reflectivity. 

5. Investigate applications with satellite images for example to detect features that 

look like roads, rivers etc. 
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6 Discussion 

Overall, the studies show that machine learning can be applied to numerous areas of the 
transport industry to help analyse known problems and build frameworks for future 
research. No one method fits all problem types so careful initial analysis of individual 
problems is needed to identify the most suitable approach. The transport industry already 
has a vast array of data sets waiting to be explored and exploited, some of them could even 
be linked together to enrich the information contained within. Even in those areas where 
data is scarce it is still possible to identify trends and recommend how to proceed further. 
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7 Overall Conclusions 

Three very different case studies have been presented here using different techniques to 
achieve different aims and different results.  

7.1 Case study 1 

The train driver behaviour study successfully used clustering to analyse a small data set and 
still provide some useful conclusions. In the end, it was possible to conclude that a machine 
learning approach would be able to hint at correlations similar to those recognised by a 
human, but making it approach manual observation would require more data. This case 
study highlights how important the data structure is in machine learning in order to produce 
worthwhile results. 

7.2 Case study 2 

The project has resulted in a stable data retrieval system that made it possible to quickly 
query the database to collate any number of inputs and outputs from those available and 
produce a single global model for the dataset or a multitude of section-specific ones. The 
script also allowed for the assessment of individual models, and could perform a combined 
aggregate test on several trees at once. The study showed that the resources of existing 
data sets is significant. The final results were inconclusive but the act of researching this 
data has now built a stable framework on which to progress future work. 

7.3 Case study 3 

The crack detection study showed that some of the more mundane and labour intensive 
processes can be automated and useful results obtained. 

The investigation showed that the outcome can vary quite significantly by varying 
parameters. Some experiments lead to an improvement in the accuracy of crack detection, 
whilst other reduced it. The experience gained with these experiments has helped gain an 
increase in knowledge on how machine learning can be applied to a problem. 
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8 Summary 

These case studies have highlighted that machine learning can be used across the whole 
transport industry but the results will vary vastly depending on the problem being tackled. 
The train driver behaviour study successfully used clustering to analyse a small data set and 
still provide some useful conclusions. This study also emphasised the need to fully pre-
process what little data they had to avoid outlier points from obscuring any visible trends. 

The condition forecasting of road pavements study shows that there are vast resources of 
existing data sets out there waiting to be explored. The final results were inconclusive but 
the act of researching this data has now built a stable framework on which to progress 
future work. This study also offers the possibility of extending a known data set by linking in 
other data resources. 

The crack detection study using classification of images shows that we can automate some 
of the more mundane and labour intensive processes. The methodology used here required 
a lot of tweaking to find the right parameter values to use but once set they produced some 
useful results. 

Overall, these studies show that machine learning can be applied to numerous areas of the 
transport industry to help analyse known problems and build frameworks for future 
research. No one method fits all problem types so careful initial analysis of individual 
problems is needed to identify the most suitable approach to use. The transport industry 
already has a vast array of data sets waiting to be explored and exploited, some of them 
could even be linked together to enrich the information contained within. Even in those 
areas where data is scarce it is still possible to identify trends and recommend how to 
proceed further. 
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9 Recommendations 

The work described here covers three separate case studies that show how machine 
learning could be applied. The work needs to continue in order to gain more experience 
with the methods employed and what methods suit the various different problems. As the 
experience grows the understanding of how machine learning can be applied will grow and 
an increasing number of problems can be solved. As time passes, machine learning will 
become further relied upon to deal with large amounts of data, finding new ways to address 
issues in more efficient and effective ways. 

The outlook for the future of ML is bright. It is becoming increasing important due to both 
the availability of greater amounts of data and the increasing computing power that permits 
better analysis. There remains the need to learn more about the potential and how to 
harness it in terms of making analysis more effective and enabling handling of larger and 
more diverse data sets.  
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Appendix A Literature 

In this section we will cover two main streams of machine learning for image processing, the 
classical machine learning which is the main approach taken by researcher pre 2010, and 
the modern machine learning, that focuses on deep learning technologies such as 
Convolutional Neural Network, De-Convolved Neural Network and Recurrent Neural 
network. New developments in computer processing technologies have contributed 
tremendously to the taking off of deep learning. 

This section starts by covering the classical machine learning, then the modern machine 
learning known also as deep learning.  

From this point onward any mention of the word “learning” is under the “supervised 
learning” context. 

A.1 Classical machine learning 

In any machine learning approach (be it classical or modern) there are two phases: the 
training phase and the prediction phase. 

The two main ingredients of the training phase are feature extractions, and training of the 
machine learning algorithm to classify the images. Basically the raw images transformed into 
a set of vectorised features and the labels are input to the machine learning algorithm that 
produces a trained classifier that will be used in the prediction phase. 

In the prediction phase, raw image transformed into a set of vectorised features as an input 
to the trained classifier that outputs class labels to the raw images. 

In the following a review of some classical feature extractions are given in section A.1,  some 
popular machine algorithms  in section A.3, and a methodology for building a training data 
set is described in A.4. 

A.2 Review of Feature extraction 

Feature extraction is the backbone of the classical machine learning. Methods for feature 
extraction using images are based on computing a set of statistics from the distributions of 
local features in the neighbourhood of the pixel. In the following some techniques popular 
among researchers are described. 

A.2.1 Co-occurrence matrix 

The co-occurrence method was introduced by Haralick et al. (1973) as a measure of the 
texture of an image. A co-occurrence matrix is a matrix that is defined over an image to be 

the distribution of co-occurring pixel values at a given offset d in any direction . 
Mathematically a co-occurrence matrix C is defined over an image I of size n×m for a 
displacements Δx and Δy as: 
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The Co-occurrence matrix C is often referred to as Grey Level Co-occurrence Matrix (GLCM). 

Usually the matrix C is calculated for values of  show in Figure A 1 depicts an eight 
neighbourhood pixel to describe the connectivity to the central pixel (shown by the black 
dot): pixels 1 and 5 are 0o neighbour to the central pixel, pixels 2 and 6 are 135o neighbour 
to the central pixel, pixel 7 and 3 are 90o neighbour to the central pixel; and pixels 8 and are 
45o neighbour to the central pixel. Figure A 1 is the case for which d is equal to 1, however 
the value of d will depend on the application .i.e. if we want to quantify fine texture or 
coarse texture; there is no recommended value for d in the literature, Haralick et al used d 
equal to 1. 

 

Figure A 1: Eight neighbourhood pixel (1, 2, 3, 4, 5, 6, 7 , and 8) connectivity to the central 
pixel (black dot) 

This matrix is used to extract second-order statistical texture features. Haralick et al. 
suggested 14 features to describe the two dimensional probability density function p(i,j) 
defining the (i,j) entry after normalising GLCM. Among them are angular second moment, 
contrast, correlation, entropy, sum of entropy, information measure of correlation and the 
maximal correlation features defined respectively as: 

Angular second moment: 
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Correlation: 
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where µx, µy, σx and σy are the means and the standard deviations of the marginal 
probability matrix px (obtained by summing the rows of p(I,j)) and py (obtained by summing 
the columns of p(I,j)).  
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Entropy: 
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Sum Entropy: 
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where  ip yx  is defined as: 

   

kji

N

1i

N

1j

yx j,ipkp



 

          (A 7) 

Information measures of correlation: 
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where HX and HY are entropy of the marginal probabilities px and py obtained by summing 
the rows and the columns of the normalised grey tone spatial dependence matrix p(i,j). 
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Maximal correlation coefficient: 
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A.2.2 Difference method 

It is the same as co-occurrence matrix, in the sense it uses displacements Δx and Δy to 
locate a pixel from position (i,j) in an image I, and then compute the grey scale level 
absolute difference as:  

)yj,xi(I)j,i(I)j,i('I           

Let p’ be the probability density function of I’(x,y). If the image has got m grey scale levels; 
then p’ is a vector of size m, and its ith component is the probability that I’(i.j) is equal to i. 
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The difference method was used by Ojala et al. (1994) and computed four texture features: 
DIFFX and DIFFY for probability density of grey scale difference between neighbouring pixels 
in the horizontal and vertical directions; DIFF2 accumulates absolute difference in the 
horizontal and vertical direction, and DIFF4 in all four principal directions. 

A.2.3 The Law method 

The Law method (Law, 1980) uses local masks to detect various types of textures. The masks 
are built from 3 elements vectors or 5 elements vectors. 

The three elements vectors are L3=[1,2,1] used for local averaging , E3=[-1,0,1] for edge 
detection and S3=[-1,2,-1] for spot detection and are used to generate Law’s 3 by 3 masks 
shown in Figure A 2. 

 

Figure A 2:  Law’s 3×3 masks 

The masks are five element vectors and are given below: L5 is used to quantify the local 
average of the texture; E5 is used to extract the edges; S5 is a spot detector; W5 is a wave 
detector; and R5 is a ripple detector 

L5=[1,4,6,4,1], E5=[-1,-2,0,2,1], S5=[-1,0,2,-1], W5=[-1,2,0,-2,1], R5=[1,-4,6,-4,1] 

These vectors are used to generate sixteen 5×5 convolution mask used to calculate the 
energy of texture which is then represented by a nine element vector for each pixel, see 
CSE576, 2000. The list of masks is: L5L5, E5E5, S5S5, R5R5, L5E5, E5L5, L5S5, S5L5, L5R5, 
R5L5, E5S5, S5E5, E5R5, R5E5, S5R5, R5S5. 

A.2.4 Local binary pattern 

Ojala et al. (1996) introduced the Local Binary Pattern (LBP) operator, it provides a robust 
way of describing locally pure binary patterns in a texture. It is invariant to any monotonic 
grey scale transformation; Figure A 3 depicts the method for calculating LBP. 
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Figure A 3:  Calculation of LBP 

Ojala also introduced a variant of LPB that is rotation invariant LPBROT. The binary values of 
the thresholded pattern in Error! Reference source not found. are mapped into 8bit words 
highlighted green in Error! Reference source not found.. Then binary shifts are applied until 
the 8bit word matches on of the 36 pattern displayed in Figure A 4. Observe that after one 
shift a match is obtained for pattern with index 27 used as the value for LBPROT. 

 

Figure A 4: Calculation of LBPROT 

A.2.5 Wavelet transform 

Wavelet transform is a mathematical entity that provides a mapping of a function from the 
time domain to frequency/time domain. Wavelet transforms are different from Fourier 
transforms, firstly wavelet are local and the Fourier transforms are global, secondly wavelet 
transforms provide a good resolution in both the time and the frequency domain whereas 
Fourier transforms provide a good resolution only in the frequency domain. Wavelet 
transforms have been used to obtain a robust characterisation of texture of the road surface, 
for example Xu et al. (2010) presented a novel texture description approach that is robust to 
variances in rotation, scale and illumination; to achieve this they used the Local Haar Binary 
Pattern (LHBP) with a feature extraction and scale self-adaptive classification. They 
combined the LHBP feature constructor with a threshold filter to remove the variances of 
grey level caused by changes of light.  

Yang et al. (2014) used wavelet transform to characterise texture from images obtained 
with a stereo camera-based mobile image processing system to detect road surface 
condition: Dry, wet, snowy and icy. They used a combination of feature construction, 
wavelet statistical features and Hue intensity histograms, to improve the accuracy of the 
classification. 
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A.3 Machine learning methods 

Many papers for road condition classification were identified using classification methods 
such as support vector machine (Yang et al., 2014; Shu et al., 2007; Xu. et al., 2010), k-mean 
clustering (Kim et al., 2013), nearest neighbour algorithm (Teshima et al., 2009; Ojala, 1996), 
neural networks (Kuehnle et al. 1998, McFall, 2000). One paper used G statistics to classify 
natural scenes with water (Ojala et al., 1999). 

A.3.1 G statistics 

Most of the approaches to texture classification quantify texture measures by single values 
(means, variances etc.), which are then concatenated into a feature vector. In this way, 
much of the important information contained in the whole distributions of feature values is 
lost, Pietikainen et al. (2000). 

They used the G statistics which a log-likelihood pseudo metric to compare feature 
distribution during classification. The value of the G statistic indicates the probability that 
the two sample distributions come from the same population, the higher the value, the 
lower the probability that the two samples are from the same population. The G statistics is 
expressed with the following formula: 
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Where s and m are sample and model distribution, n is the number of bins and si, mi are the 
sample probability and the model probability at bin i, respectively.  

A texture class is represented by a number of model samples that are ordered according to 
the probability that they are coming from the same distribution as the test sample being 
classified. This probability is measured by a two-way test of interaction as: 
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Where s, m are the two sample histograms, n is the number of bins and fi is the frequency at 
bin i. The more alike the histograms s and m are, the smaller is the value of G. 

A.3.2 Support vector machine 

The Support Vector Machine (SVM) is a technique that is used to classify the space of 

feature using a surface. Support Vector Machine (SVM) is a supervised learning algorithm 

that analyse data and recognises patterns. Given a set of training samples, each marked as 

belonging to one of two categories, an SVM training algorithm builds a model that assigns 

new samples into one class or the other, making it a non-probabilistic binary linear classifier. 

An SVM model is a representation of the training samples as points in space, mapped so 

that the samples of the separate classes are divided by a clear gap that is as wide as 
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possible. New samples are then mapped into that same space and predicted to belong to a 

class depending on which side of the gap they fall on. In addition to performing linear 

classification, SVM can efficiently perform a non-linear classification using non-linear 

kernels, implicitly mapping their inputs into high-dimensional feature spaces. 

A.3.3 Neural networks 

Neural Nets can be considered as a general purpose fitting algorithm as they are able to fit 
complex nonlinear model. The general structure of a neural network is to mimic the neuron 
linkage and transmission in the brain. The first layer of the neural network is the input nodes 
representing the data points, this layer sends data via synapse (representing weights) to a 
hidden layer representing the neuron; and depending on the complexity of the neural 
system, the hidden layer could propagate data via synapse linking several hidden layers, 
then finish at the final layer which is the output nodes.  

The main parameters of the Neural Networks are: 

 N observation points 

 The interconnection defining the different layers 

 The weight representing the synapse, and the process of updating these parameters. 

 The activation functions that represent the transformation that occur in the neural 
nodes; this tries to mimic the firing of the brain synapses 

A.3.4 Decision trees 

Decision tree is a very powerful technique that is used for regression or classification; we 
speak of regression if the data sets analysed are continuous, and classification if they are 
discrete. Continuity of data set implies the use of real numbers that can be described with 
continuous function. Texture data collected by a laser scanner are an example of continuous 
data. Discrete implies the use of categorical data (that are basically descriptive or quality 
attributes of the data set) for example accident count on the road, and the level of 
deterioration of a road classified as high, medium or low. Basically the decision tree could 
be viewed as a process of organizing the interaction and decision outcome of several input 
variables in a controlled systematic way. 

A.3.5 k-mean clustering 

k-mean clustering aims to partition n observations into k clusters in which each observation 
belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This 
results in a partitioning of the data space similar to Voronoi cells. 

A.3.6 Gaussian mixtures 

They are type of algorithm know as unsupervised learning, in the sense that there is no prior 
knowledge on how the data set relates to the mixture models; and the knowledge about 
this relation to the data set is acquired during the successive iterations trying to fit the 
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mixture models to the data set. This gives generality to the Gaussian model and makes it 
able to detect complex relationship between variables.  

The main parameters of the model are: 

 N observation points 

 K Gaussian probabilities 

 A set of probabilities that pin a particular data point to a particular Gaussian 
distribution. 

 The mean the Gaussian probability 

 The variance of the Gaussian probability 

The last three parameters are updated during the iteration process in order to updated the 
count of data points falling in each Gaussian, the mean of the Gaussian which has physical 
meaning that is position of the Gaussian in the space of variable and the covariance 
expresses the spread of the Gaussian in the variable space. 

In the following I will try to explain the methodology to use to perform a classification with 
images, and the requirements for a good classification. 

A.4 Methodology for building a training data set 

The data set is split randomly into two halves, the first half is called the training set and the 
second half is called the out of bag set. The first set is used to train the classifier, and the 
second set is used to assess the predictive accuracy of the classifier. 

Commonly, the training of the classifier uses supervised learning, in the sense that the 
training is performed on a data set for which the classification outcome is known. 

In a classical machine learning context, the construction of this data set requires the 
definition of texture features using the techniques introduced in section A.1. A wide variety 
of images representing the different classes should be selected and labelled carefully, this 
task is very tedious and time consuming. 

It should be stressed that adding data sources other than images will only make prediction 
more robust (this reinforces the view of using different sources of data in order to obtain 
accurate predictions); for example Kim et al. (2013) was able to detect wet road at a rate of 
95% by combining road images and weather condition data; and Mc Fall (2000) reported 
that the classification of road conditions into the categories dry, wet, snowy and icy with 
Neural Networks is improved to 90% if additional measurements such as the recording of 
the sound of the a rolling tyre on the road surface are introduced in the classification. 

An inconvenience of training a machine learning algorithm is that practically it is not 
possible to include all the possible cases of the features to perform complete training of 
different cases and variations, however with time and resources a more varied data set 
could be built, and the training of is updated regularly as new data is available. To do this we 
need to invest in efficient performing machine learning algorithms that do not take weeks to 
train.  
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A.5 Deep learning 

The difference between machine learning and deep learning is that the feature extraction 
from the raw images is engineered by the data analyst to suit its application, this process is 
very time consuming and expansive for large and variable data; however in deep learning 
the feature extraction is a learning process (i.e. the feature are directly learning from the 
raw images), using a multitude of non-linear processing layers. The detail of these layers will 
be explained further for Convolutional Neural Networks (CNN) in section A.5.2. 

A.5.1 A brief Historical overview of CNN 

The first convolutional neural network was introduced in the early 1990’s by LeCun et all 
(1989) in his seminal paper titled “Gradient-based learning applied to document 
recognition”. In 1998, he proposed the CNN architecture (LeNet-5), given in Figure A 5 for 
digits recognition, it contains seven layers in total: two convolutional layers, two 
subsampling layers and three fully connected layers. It combines local receptive fields, 
weight sharing and spatial subsampling in order to ensure shift, scale and distortion 
invariance.  

 

Figure A 5:  CNN LeNet-5 

 

Although CNN found advocates in image vision and image recognition pre 2012 (Jarret et all, 
2009; Kavukcuoglu et all; 2010; Zeiler et all, 2013 and Coates et all, 2013); the use of CNN 
for image processing did not pick up only until 2012, after the ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC), that achieved the lowest error score applied on real word 
image in the history of machine learning. The images used in ILSVRC are a subset of 
ImageNet and split into 1.4 million images with 1000 categories for training the CNN and 
10000 images for predictions. Typical ImageNet categories used in the competition are 
shown in Figure A 6. 
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Figure A 6: Some ImageNet categories (after Krizhevsky et all, 2012) 

 

In this competition, the AlexNet architecture achieved an error rate of 15.3% compared to 
26% achieved by the second best. Figure A 7 depicts the AlexNet architecture, it is split 
between two GPU’s (GPU are used instead of CPU’s or in combination with them to increase 
the speed of calculations with parallel processing). AlexNet is made of five convolutional 
layers and three fully connected layers. 

 

 

Figure A 7: Illustration of AlexNet architecture (after Krizhevsky et all, 2012) 

 

The dramatic improvement in CNN performance is attributed  (Zeiler et all, 2013) to the 
availability of much larger training data sets, with millions of labelled examples; powerful 
GPU implementations making the training of very large models practical and better 
regularisations strategies such as dropouts. 



Machine Learning   

 

 

1.0 53 PPR863 

Zeiler et all (2013), proposed the De-Convolved Neural Network depicted in Figure A 8, 
basically it consist of a forward feed Convolutional Neural Network and reverse 
Convolutional Neural Net that has exactly the same characteristics as the forward feed CNN 
(in terms of filter sizes and number of layers) with the exception that Max Unpooling is 
performed instead of Max Pooling. The most important feature of the network is the 
Switches which provide a link between the forward and the reverse. The Switches are 
indexes for the location of the maximum activation response of the Max Pooling in the 
forward CNN. 

 

 

Figure A 8: Top: A DCNN layer (left) attached to a CNN layer (right). The DCNN will 
reconstruct an approximate version of the CNN features from the layer beneath. Bottom: 
An illustration of the unpooling operation in the DCNN, using switches which record the 
location of the local max in each pooling region (coloured zones) during pooling in the 

CNN. The black/white bars are negative/positive activations within the feature map (after 
Zeiler et all, 2013) 

The DCNN was used as an assessment tool to investigate the shortcomings of the AlexNet, 
by doing this Zeiler et all won the ImageNet challenge by obtaining the lowest error rate of 
11%. 

A.5.2 A succinct explanation of CNN  

A CNN is usually made of a number of convolutional layers, subsampling layers also known 
as Max Pooling layers and fully connected layers, see Figure A 9. 
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Figure A 9: A Typical Convolutional Neural Network (CNN)  architecture 

 

The convolutional layer, basically applies m filters to the image in order to learn semantic 
feature from it; the filter mask is generally square of size h, with a vertical or a horizontal 
translation degree of freedom with a step of s constrained to be between 1 and the size of 
the filter h. The filter transformation has two parameters that are learned: the weight w and 
the bias b. The convolution of the filters will produce m feature frames. 

After each convolution a ReLu is applied to squash the data between 0 and 1, it similar to a 
sigmoid function or a Tanh function in what it is trying to achieve however with far better 
performance (see, Krizhevsky et all, 2012).  

The Max Pooling layers are generally inserted after a convolution layer or after performing 
two or three successive convolutions as for the AlexNet architecture, see Error! Reference 
source not found.. The MaxPool layer has two parameters: size of the window t and the 
stride of the windows. The size of the window t is generally 2 or 3 and the stride s is taken 
equal to t, however some researchers proposed that taking s less than t reduces the error 
rate of the CNN by 0.4%. 

The Max Pooling layer is introduced to increase the computation efficiency of the CNN by 
reducing the size of the data by a ratio of t, and by pooling maximum information from all 
the data in the pooling window, this triggers an association to particular feature orientations 
that could be useful in the classification stages. 

With the combination of convolution and Max Pooling the first convolutions layer learns 
simple edge shapes with different orientation, the second convolutional layer learns to 
identify more complicated geometries such as intersections, angles. More meaningful 
semantics are leaned by the other convolution layers deeper in the network. 

The Fully Connected layer, is generally the last layer before the classifier layer. It can be 
treated as a convolutional layer, however the learning is not restricted only to data in a 
small window but uses all the data in the previous layer. 

The last fully connected layer is the classifier which calculates the class probabilities, the 
higher the probability the most probable is feature belongs to the class. 

A.5.3 Optimisation techniques 

Optimisation deals with the problem of finding a set of parameters that minimise the loss 
function. The most popular method to solve the loss function is the Stochastic Gradient 
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Decent, and the ADAM (ADAptive Momentum estimation) method used for large data sets 
with high dimensionality.  

SGD is an incremental gradient descent and approximates stochastically the well-known 
gradient descent optimization method that minimises the loss function using the whole data 
set. SGD uses randomly select small batches of the training data set to achieve convergence. 

If L() is the loss function that we are trying to minimise with respect to , the SDG updates 

the parameter  as: 

 

 θLλθθ           (A 17) 

 

Where  is the learning rate, and L() is the gradient of the loss function at the point of 
evaluation. 

The ADAM method (see Kingma et all, 2014) is well suited for noisy large data sets, uses the 
first and second moment estimates of the gradients  to compute the learning rates of each 

parameter, the ADAM updates of the parameter  is given as: 
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          (A 18) 

 

Where  is the learning rate, m̂  is first moment estimate, and v̂  is the second moment 
estimate, ε is a small number to avoid zero denominators. 
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